forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[torch.compile] Dynamic fp8 + rms_norm fusion (vllm-project#10906)
Signed-off-by: luka <[email protected]> Co-authored-by: Varun Sundar Rabindranath <[email protected]>
- Loading branch information
Showing
20 changed files
with
1,736 additions
and
252 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
import pickle as pkl | ||
import time | ||
from dataclasses import dataclass | ||
from itertools import product | ||
from typing import Callable, Iterable, List, Optional | ||
|
||
import torch | ||
import torch.utils.benchmark as TBenchmark | ||
from torch.utils.benchmark import Measurement as TMeasurement | ||
from tqdm import tqdm | ||
|
||
import vllm._custom_ops as ops | ||
from vllm.model_executor.layers.layernorm import RMSNorm | ||
|
||
|
||
@dataclass | ||
class bench_params_t: | ||
num_tokens: int | ||
hidden_size: int | ||
add_residual: bool | ||
dtype: torch.dtype | ||
|
||
def description(self): | ||
return (f'N {self.num_tokens} ' | ||
f'x D {self.hidden_size} ' | ||
f'x R {self.add_residual} ' | ||
f'x DT {self.dtype}') | ||
|
||
|
||
def get_bench_params() -> List[bench_params_t]: | ||
## Test Fixtures | ||
NUM_TOKENS = [2**x for x in range(11)] | ||
HIDDEN_SIZES = list(range(1024, 8129, 1024)) | ||
ADD_RESIDUAL = [True, False] | ||
DTYPES = [torch.bfloat16, torch.float] | ||
|
||
combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES) | ||
bench_params = list(map(lambda x: \ | ||
bench_params_t(x[0], x[1], x[2], x[3]), combinations)) | ||
return bench_params | ||
|
||
|
||
# Reference impls | ||
def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor, | ||
residual: Optional[torch.Tensor], | ||
quant_dtype: torch.dtype): | ||
# Norm | ||
torch_out = None | ||
if residual is None: | ||
torch_out = rms_norm_layer.forward_cuda(x, residual) | ||
else: | ||
torch_out, _ = rms_norm_layer.forward_cuda(x, residual) | ||
|
||
# Quant | ||
torch_out, _, _ = ops.scaled_int8_quant(torch_out) | ||
|
||
|
||
def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor, | ||
residual: Optional[torch.Tensor], | ||
quant_dtype: torch.dtype): | ||
# Norm | ||
torch_out = None | ||
if residual is None: | ||
torch_out = rms_norm_layer.forward_cuda(x, residual) | ||
else: | ||
torch_out, _ = rms_norm_layer.forward_cuda(x, residual) | ||
|
||
# Quant | ||
torch_out, _ = ops.scaled_fp8_quant(torch_out) | ||
|
||
|
||
def fused_impl( | ||
rms_norm_layer: RMSNorm, # this stores the weights | ||
x: torch.Tensor, | ||
residual: Optional[torch.Tensor], | ||
quant_dtype: torch.dtype): | ||
out, _ = ops.rms_norm_dynamic_per_token_quant(x, | ||
rms_norm_layer.weight, | ||
1e-6, | ||
quant_dtype, | ||
residual=residual) | ||
|
||
|
||
# Bench functions | ||
def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor, | ||
quant_dtype: torch.dtype, label: str, sub_label: str, | ||
fn: Callable, description: str) -> TMeasurement: | ||
|
||
min_run_time = 1 | ||
|
||
globals = { | ||
"rms_norm_layer": rms_norm_layer, | ||
"x": x, | ||
"residual": residual, | ||
"quant_dtype": quant_dtype, | ||
"fn": fn, | ||
} | ||
return TBenchmark.Timer( | ||
stmt="fn(rms_norm_layer, x, residual, quant_dtype)", | ||
globals=globals, | ||
label=label, | ||
sub_label=sub_label, | ||
description=description, | ||
).blocked_autorange(min_run_time=min_run_time) | ||
|
||
def bench(params: bench_params_t, label: str, sub_label: str) \ | ||
-> Iterable[TMeasurement]: | ||
|
||
# Make inputs | ||
layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype) | ||
# Make weights | ||
layer.weight.data.normal_(mean=1.0, std=0.1) | ||
# Make inputs | ||
scale = 1 / params.hidden_size | ||
x = torch.randn(params.num_tokens, | ||
params.hidden_size, | ||
dtype=params.dtype, | ||
device='cuda') * scale | ||
residual = (torch.randn_like(x) * scale).to(device='cuda') \ | ||
if params.add_residual else None | ||
|
||
timers = [] | ||
|
||
# unfused int8 impl. | ||
timers.append( | ||
bench_fn(layer, x, residual, torch.int8, label, sub_label, | ||
unfused_int8_impl, "unfused_int8_impl")) | ||
|
||
# unfused fp8 impl. | ||
timers.append( | ||
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label, | ||
unfused_fp8_impl, "unfused_fp8_impl")) | ||
|
||
# fused int8 impl. | ||
timers.append( | ||
bench_fn(layer, x, residual, torch.int8, label, sub_label, fused_impl, | ||
"fused_int8_impl")) | ||
|
||
# fused fp8 impl. | ||
timers.append( | ||
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label, | ||
fused_impl, "fused_fp8_impl")) | ||
|
||
print_timers(timers) | ||
|
||
return timers | ||
|
||
|
||
# launch bench | ||
# runner | ||
def print_timers(timers: Iterable[TMeasurement]): | ||
compare = TBenchmark.Compare(timers) | ||
compare.print() | ||
|
||
|
||
def main(): | ||
torch.set_default_device('cuda') | ||
bench_params = get_bench_params() | ||
|
||
timers = [] | ||
for bp in tqdm(bench_params): | ||
timers.extend( | ||
bench(bp, "rms-norm-dynamic-per-token-quant", bp.description())) | ||
print_timers(timers) | ||
|
||
# pickle all the results | ||
timestamp = int(time.time()) | ||
with open(f"rms_norm_dpt_quant-{timestamp}.pkl", "wb") as f: | ||
pkl.dump(timers, f) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.