Skip to content

Commit

Permalink
Merge pull request #17 from BBVA/develop
Browse files Browse the repository at this point in the history
New Release 1.2
  • Loading branch information
SIPVZ authored Nov 20, 2018
2 parents 32b10f0 + 0dad863 commit 9ffed30
Show file tree
Hide file tree
Showing 102 changed files with 18,662 additions and 2,802 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ TIMECOP
![alt text](https://raw.githubusercontent.com/BBVA/timecop/master/doc/img/timecop.png)


TIMECOP is a RESTful webservice engine that evaluates univariate and multivariate timeseries. It considerates that the time series has 3 stages: the current state of the time series as the last five points, the past state as all the previous points before the current state and the future state as the forecast of the next 5 points.
TIMECOP is a RESTful webservice engine that evaluates univariate and multivariate timeseries. It considerates that the time series has 3 stages: the current state of the time series as the last five points, the past state as all the previous points before the current state and the future state as the forecast of the next steps(custom number).

The aim of TIMECOP is to get insight on the behavior of the time series. To achieve this, the engine compares several time series forecasting algorithms and select the best one according to the MAE (mean absolute error) metric. The 3 different algorithms that compounds the engine are: Holt-Winters, ARIMA, and Recurrent Neural Networks using LSTM cells.

Expand Down
Binary file removed engines/__init__.pyc
Binary file not shown.
Binary file added engines/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file added engines/__pycache__/auto_arima.cpython-36.pyc
Binary file not shown.
Binary file not shown.
Binary file added engines/__pycache__/helpers.cpython-36.pyc
Binary file not shown.
Binary file added engines/__pycache__/holtwinter.cpython-36.pyc
Binary file not shown.
Binary file added engines/__pycache__/lstm.cpython-36.pyc
Binary file not shown.
Binary file added engines/__pycache__/var.cpython-36.pyc
Binary file not shown.
21 changes: 14 additions & 7 deletions engines/auto_arima.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,23 @@
import pandas as pd
from pyramid.arima import auto_arima
from sklearn.metrics import mean_squared_error,mean_absolute_error
import helpers as h
from . helpers import create_train_test

def anomaly_AutoArima(lista_datos,desv_mse=0):
def anomaly_AutoArima(lista_datos,num_fut,orig_size,desv_mse=0):

lista_puntos = np.arange(0, len(lista_datos),1)
print (orig_size)

print ("tamanio original")
start_point= int(orig_size) - 100

print ("start point " + str(start_point))
lista_puntos = np.arange(start_point, orig_size,1)

df, df_train, df_test = h.create_train_test(lista_puntos, lista_datos)
print (lista_puntos)
df, df_train, df_test = create_train_test(lista_puntos, lista_datos)

engine_output={}
print ("arranca")

stepwise_model = auto_arima(df_train['valores'], start_p=1, start_q=1, max_p=3, max_q=3, m=12,
start_P=0, seasonal=True, d=1, D=1, trace=False, approx=False,
Expand Down Expand Up @@ -73,7 +81,7 @@ def anomaly_AutoArima(lista_datos,desv_mse=0):
############## FORECAST START
updated_model = stepwise_model.fit(df['valores'])

forecast = updated_model.predict(n_periods=5)
forecast = updated_model.predict(n_periods=num_fut)

engine_output['rmse'] = rmse
engine_output['mse'] = mse
Expand All @@ -84,11 +92,10 @@ def anomaly_AutoArima(lista_datos,desv_mse=0):
engine_output['engine']='Autoarima'
df_future= pd.DataFrame(forecast,columns=['value'])
df_future['value']=df_future.value.astype("float32")
df_future['step']= np.arange( len(lista_datos),len(lista_datos)+5,1)
df_future['step']= np.arange( len(lista_datos),len(lista_datos)+num_fut,1)
engine_output['future'] = df_future.to_dict(orient='record')
testing_data = pd.DataFrame(future_forecast_pred,index = df_test.index,columns=['expected value'])
testing_data['step']=testing_data.index
engine_output['debug'] = testing_data.to_dict(orient='record')

return (engine_output)

Binary file removed engines/auto_arima.pyc
Binary file not shown.
143 changes: 95 additions & 48 deletions engines/functions_timeseries.py
Original file line number Diff line number Diff line change
@@ -1,55 +1,98 @@
from helpers import merge_two_dicts
from var import anomaly_VAR, univariate_anomaly_VAR
from holtwinter import anomaly_holt
from auto_arima import anomaly_AutoArima
from lstm import anomaly_LSTM, anomaly_uni_LSTM
from engines.helpers import merge_two_dicts
from . var import anomaly_VAR, univariate_anomaly_VAR,univariate_forecast_VAR
from . holtwinter import anomaly_holt,forecast_holt
from . auto_arima import anomaly_AutoArima
from . lstm import anomaly_LSTM, anomaly_uni_LSTM
import traceback

def model_univariate(lista_datos,num_fut,desv_mse):

def model_univariate(lista_datos,num_fut,desv_mse,train,name):
engines_output={}
debug = {}

try:
engines_output['LSTM'] = anomaly_uni_LSTM(lista_datos,desv_mse)
debug['LSTM'] = engines_output['LSTM']['debug']
except Exception as e:
print(e)
print ('ERROR: exception executing LSTM univariate')

#try:
#engines_output['arima'] = anomaly_AutoArima(lista_datos,desv_mse)
#debug['arima'] = engines_output['arima']['debug']
#except Exception as e:
#print(e)
#print ('ERROR: exception executing Autoarima')
try:
engines_output['VAR'] = univariate_anomaly_VAR(lista_datos)
debug['VAR'] = engines_output['VAR']['debug']
except Exception as e:
print(e)
print ('ERROR: exception executing VAR')
try:
engines_output['Holtwinters'] = anomaly_holt(lista_datos,desv_mse)
debug['Holtwinters'] = engines_output['Holtwinters']['debug']
except Exception as e:
print(e)
print ('ERROR: exception executing Holtwinters')
if train != 'True':
filename = './models_temp/'+name
with open(filename,'r') as f:
winner = f.read()
f.close()
if winner == 'LSTM':
try:
engines_output['LSTM'] = anomaly_uni_LSTM(lista_datos,num_fut,desv_mse,train)
debug['LSTM'] = engines_output['LSTM']['debug']
except Exception as e:
print(e)
print ('ERROR: exception executing LSTM univariate')
elif winner == 'VAR':
engines_output['VAR'] = univariate_forecast_VAR(lista_datos,num_fut,name)
debug['VAR'] = engines_output['VAR']['debug']
elif winner == 'Holtwinters':
engines_output['Holtwinters'] = forecast_holt(lista_datos,num_fut,desv_mse,name)
debug['Holtwinters'] = engines_output['Holtwinters']['debug']
else:
print ("Error")

best_mae=999999999
winner='Holtwinters'
print ('The size is: ')
print (len(engines_output))
for key, value in engines_output.iteritems():
print (key + " " + str(value['mae']))
else:
try:
engines_output['LSTM'] = anomaly_uni_LSTM(lista_datos,num_fut,desv_mse,train)
debug['LSTM'] = engines_output['LSTM']['debug']
except Exception as e:
print(e)
print ('ERROR: exception executing LSTM univariate')

if value['mae'] < best_mae:
best_mae=value['mae']
winner=key
print(winner)

#try:
#if (len(lista_datos) > 100):
##new_length=
#lista_datos_ari=lista_datos[len(lista_datos)-100:]
#engines_output['arima'] = anomaly_AutoArima(lista_datos_ari,num_fut,len(lista_datos),desv_mse)
#debug['arima'] = engines_output['arima']['debug']
#except Exception as e:
#print(e)
#print ('ERROR: exception executing Autoarima')

try:
if (train == 'True'):
engines_output['VAR'] = univariate_anomaly_VAR(lista_datos,num_fut,name)
debug['VAR'] = engines_output['VAR']['debug']
else:
engines_output['VAR'] = univariate_forecast_VAR(lista_datos,num_fut,name)
debug['VAR'] = engines_output['VAR']['debug']
except Exception as e:
print(e)
print ('ERROR: exception executing VAR')

try:
if (train == 'True'):
engines_output['Holtwinters'] = anomaly_holt(lista_datos,num_fut,desv_mse,name)
debug['Holtwinters'] = engines_output['Holtwinters']['debug']
else:
print ("entra en forecast")
engines_output['Holtwinters'] = forecast_holt(lista_datos,num_fut,desv_mse,name)
debug['Holtwinters'] = engines_output['Holtwinters']['debug']
except Exception as e:
print(e)
print ('ERROR: exception executing Holtwinters')


best_mae=999999999
winner='Holtwinters'
print ('The size is: ')
print (len(engines_output))
for key, value in engines_output.items():
print (key + " " + str(value['mae']))

if value['mae'] < best_mae:
best_mae=value['mae']
winner=key
print(winner)

filename = './models_temp/'+name
with open(filename,'w') as f:
f.write(winner)
f.close()


print winner
print (winner)

temp= {}
temp['debug']=debug
Expand All @@ -64,33 +107,37 @@ def model_multivariate(list_var,num_fut,desv_mse):
debug = {}

try:
engines_output['LSTM'] = anomaly_LSTM(list_var,desv_mse)
engines_output['LSTM'] = anomaly_LSTM(list_var,num_fut,desv_mse)
debug['LSTM'] = engines_output['LSTM']['debug']
print (engines_output['LSTM'])
except Exception as e:
print(e)
print ('ERROR: exception executing LSTM')

try:
engines_output['VAR'] = anomaly_VAR(list_var)
engines_output['VAR'] = anomaly_VAR(list_var,num_fut)
debug['VAR'] = engines_output['VAR']['debug']
print (engines_output['VAR'])
except Exception as e:
print(e)
print ('ERROR: exception executing VAR')
print(Exception)
print("type error: " + str(e))
print(traceback.format_exc())
print ('ERROR: exception executing VAR')

best_mae=999999999
winner='LSTM'
print ('The size is ')
print (len(engines_output))
print (debug)
for key, value in engines_output.iteritems():
for key, value in engines_output.items():
print (key)
print(str(value['mae']))
if value['mae'] < best_mae:
print (key + " " + str(value['mae']) + " best:" + str(best_mae) )
best_mae=value['mae']
winner=key

print "el ganador es " + winner
print ("el ganador es " + winner)
temp= {}
temp['debug']=debug
return merge_two_dicts(engines_output[winner] , temp)
Binary file removed engines/functions_timeseries.pyc
Binary file not shown.
Binary file removed engines/helpers.pyc
Binary file not shown.
Loading

0 comments on commit 9ffed30

Please sign in to comment.