An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.
We will post updates regularly so you can star 🌟 or watch 👓 this repository for the latest.
This repository provides the official implementations of OHL and AWS, and will also integrate some other popular auto-aug methods (like Auto Augment, Fast AutoAugment and Adversarial autoaugment) in pure PyTorch.
We use torch.distributed
to conduct the distributed training. The model checkpoints will be upload to GoogleDrive or OneDrive soon.
It would be recommended to conduct experiments under:
- python 3.6.3
- pytorch 1.1.0, torchvision 0.2.1
All the dependencies are listed in requirements.txt
. You may use commands like pip install -r requirements.txt
to install them.
- Create the directory for your experiment.
cd /path/to/this/repo
mkdir -p exp/aws_search1
- Copy configurations into your workspace.
cp scripts/search.sh configs/aws.yaml exp/aws_search1
cd exp/aws_search1
- Start searching
# sh ./search.sh <partition_name> <num_gpu>
sh ./search.sh Test 8
An instance of yaml:
version: 0.1.0
dist:
type: torch
kwargs:
node0_addr: auto
node0_port: auto
mp_start_method: fork # fork or spawn; spawn would be too slow for Dalaloader
pipeline:
type: aws
common_kwargs:
dist_training: &dist_training False
# job_name: [will be assigned in runtime]
# exp_root: [will be assigned in runtime]
# meta_tb_lg_root: [will be assigned in runtime]
data:
type: cifar100 # case-insensitive (will be converted to lower case in runtime)
# dataset_root: /path/to/dataset/root # default: ~/datasets/[type]
train_set_size: 40000
val_set_size: 10000
batch_size: 256
dist_training: *dist_training
num_workers: 3
cutout: True
cutlen: 16
model_grad_clip: 3.0
model:
type: WRN
kwargs:
# num_classes: [will be assigned in runtime]
bn_mom: 0.5
agent:
type: ppo # ppo or REINFORCE
kwargs:
initial_baseline_ratio: 0
baseline_mom: 0.9
clip_epsilon: 0.2
max_training_times: 5
early_stopping_kl: 0.002
entropy_bonus: 0
op_cfg:
type: Adam # any type in torch.optim
kwargs:
# lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
betas: !!python/tuple [0.5, 0.999]
weight_decay: 0
sc_cfg:
type: Constant
kwargs:
base_lr_divisor: 8 # base_lr = warmup_lr / base_lr_divisor
warmup_lr: 0.1 # lr at the end of warming up
warmup_iters: 10 # warmup_epochs = epochs / warmup_divisor
iters: &finetune_lp 350
criterion:
type: LSCE
kwargs:
smooth_ratio: 0.05
special_kwargs:
pretrained_ckpt_path: ~ # /path/to/pretrained_ckpt.pth.tar
pretrain_ep: &pretrain_ep 200
pretrain_op: &sgd
type: SGD # any type in torch.optim
kwargs:
# lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
nesterov: True
momentum: 0.9
weight_decay: 0.0001
pretrain_sc:
type: Cosine
kwargs:
base_lr_divisor: 4 # base_lr = warmup_lr / base_lr_divisor
warmup_lr: 0.2 # lr at the end of warming up
warmup_divisor: 200 # warmup_epochs = epochs / warmup_divisor
epochs: *pretrain_ep
min_lr: &finetune_lr 0.001
finetuned_ckpt_path: ~ # /path/to/finetuned_ckpt.pth.tar
finetune_lp: *finetune_lp
finetune_ep: &finetune_ep 10
rewarded_ep: 2
finetune_op: *sgd
finetune_sc:
type: Constant
kwargs:
base_lr: *finetune_lr
warmup_lr: *finetune_lr
warmup_iters: 0
epochs: *finetune_ep
retrain_ep: &retrain_ep 300
retrain_op: *sgd
retrain_sc:
type: Cosine
kwargs:
base_lr_divisor: 4 # base_lr = warmup_lr / base_lr_divisor
warmup_lr: 0.4 # lr at the end of warming up
warmup_divisor: 200 # warmup_epochs = epochs / warmup_divisor
epochs: *retrain_ep
min_lr: 0
If you're going to to use this code in your research, please consider citing our papers (OHL and AWS).
@inproceedings{lin2019online,
title={Online Hyper-parameter Learning for Auto-Augmentation Strategy},
author={Lin, Chen and Guo, Minghao and Li, Chuming and Yuan, Xin and Wu, Wei and Yan, Junjie and Lin, Dahua and Ouyang, Wanli},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={6579--6588},
year={2019}
}
@article{tian2020improving,
title={Improving Auto-Augment via Augmentation-Wise Weight Sharing},
author={Tian, Keyu and Lin, Chen and Sun, Ming and Zhou, Luping and Yan, Junjie and Ouyang, Wanli},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}
- Keyu Tian, [email protected]
- Chen Lin, [email protected]