Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement concatenate_dataset_dicts #153

Merged
merged 7 commits into from
Oct 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/pie_datasets/core/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from .builder import ArrowBasedBuilder, GeneratorBasedBuilder
from .dataset import Dataset, IterableDataset, concatenate_datasets
from .dataset_dict import DatasetDict, load_dataset
from .dataset_dict import DatasetDict, concatenate_dataset_dicts, load_dataset

__all__ = [
"GeneratorBasedBuilder",
Expand All @@ -10,4 +10,5 @@
"DatasetDict",
"load_dataset",
"concatenate_datasets",
"concatenate_dataset_dicts",
]
33 changes: 24 additions & 9 deletions src/pie_datasets/core/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,6 +225,13 @@ def dataset_to_document_type(
# remove the document converters because they are not valid anymore
result.document_converters = {}

# remove features not declared in the target document type
if result.features is not None:
original_field_names = set(result.features)
target_field_names = {field.name for field in document_type.fields()}
remove_field_names = original_field_names - target_field_names
result = result.remove_columns(list(remove_field_names))

return result


Expand Down Expand Up @@ -376,7 +383,9 @@ def map(
result_document_type: Optional[Type[Document]] = None,
) -> "Dataset":
dataset = super().map(
function=decorate_convert_to_dict_of_lists(function) if as_documents else function,
function=decorate_convert_to_dict_of_lists(function)
if as_documents and function is not None
else function,
with_indices=with_indices,
with_rank=with_rank,
input_columns=input_columns,
Expand Down Expand Up @@ -582,7 +591,7 @@ def map( # type: ignore
function=decorate_convert_to_document_and_back(
function, document_type=self.document_type, batched=batched
)
if as_documents
if as_documents and function is not None
else function,
batched=batched,
**kwargs,
Expand Down Expand Up @@ -664,37 +673,43 @@ def get_pie_dataset_type(
)


def _add_dset_name_to_document(doc: Document, name: str) -> Document:
def _add_dset_name_to_document(doc: Document, name: str, clear_metadata: bool) -> Document:
if not hasattr(doc, "metadata"):
raise ValueError(
f"Document does not have metadata attribute which required to save the dataset name: {doc}"
)
# Keep the old name if available
if "dataset_name" in doc.metadata:
raise ValueError(
f"Document already has a dataset_name attribute: {doc.metadata['dataset_name']}"
)
name = doc.metadata["dataset_name"]
if clear_metadata:
doc.metadata = {}
doc.metadata["dataset_name"] = name
return doc


def concatenate_datasets(
dsets: Union[
List[Dataset], List[IterableDataset], Dict[str, Dataset], Dict[str, IterableDataset]
]
],
clear_metadata: bool,
) -> Union[Dataset, IterableDataset]:
"""Concatenate multiple datasets into a single dataset. The datasets must have the same
document type.
document type. Dataset name will be saved in Metadata.

Args:
dsets: A list of datasets or a dictionary with dataset names as keys and datasets as values. If
a dictionary is provided, the dataset names will be added to the documents as metadata.
clear_metadata: Whether to clear the metadata before concatenating.
Returns:
A new dataset that is the concatenation of the input datasets.
"""

if isinstance(dsets, dict):
dsets = [
dset.map(_add_dset_name_to_document, fn_kwargs={"name": name})
dset.map(
_add_dset_name_to_document,
fn_kwargs={"name": name, "clear_metadata": clear_metadata},
)
for name, dset in dsets.items()
]

Expand Down
40 changes: 39 additions & 1 deletion src/pie_datasets/core/dataset_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,12 @@
from pytorch_ie.core.document import Document
from pytorch_ie.utils.hydra import resolve_target, serialize_document_type

from .dataset import Dataset, IterableDataset, get_pie_dataset_type
from .dataset import (
Dataset,
IterableDataset,
concatenate_datasets,
get_pie_dataset_type,
)

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -712,3 +717,36 @@ def load_dataset(*args, **kwargs) -> Union[DatasetDict, Dataset, IterableDataset
f"expected datasets.load_dataset to return {datasets.DatasetDict}, {datasets.IterableDatasetDict}, "
f"{Dataset}, or {IterableDataset}, but got {type(dataset_or_dataset_dict)}"
)


def concatenate_dataset_dicts(
inputs: Dict[str, DatasetDict], split_mappings: Dict[str, Dict[str, str]], clear_metadata: bool
):
"""Concatenate the splits of multiple dataset dicts into a single one. Dataset name will be
saved in Metadata.

Args:
inputs: A mapping from dataset names to dataset dicts that contain the splits to concatenate.
split_mappings: A mapping from target split names to mappings from input dataset names to
source split names.
clear_metadata: Whether to clear the metadata before concatenating.

Returns: A dataset dict with keys in split_names as splits and content from the merged input
dataset dicts.
"""

input_splits = {}
for target_split_name, mapping in split_mappings.items():
input_splits[target_split_name] = {
ds_name: inputs[ds_name][source_split_name]
for ds_name, source_split_name in mapping.items()
}

result = DatasetDict(
{
target_split_name: concatenate_datasets(dsets, clear_metadata=clear_metadata)
for target_split_name, dsets in input_splits.items()
}
)

return result
3 changes: 3 additions & 0 deletions tests/fixtures/dataset_dict/comagc_extract/metadata.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{
"document_type": "pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{"text": "Thus, FGF6 is increased in PIN and prostate cancer and can promote the proliferation of the transformed prostatic epithelial cells via paracrine and autocrine mechanisms.", "id": "10945637.s12", "metadata": {"CCS": "normalTOcancer", "CGE": "increased", "IGE": "unchanged", "PT": "causality", "cancer_type": "prostate", "expression_change_keyword_1": {"name": "\nNone\n", "pos": null, "type": null}, "expression_change_keyword_2": {"name": "increased", "pos": [14, 22], "type": "Positive_regulation"}}, "labeled_spans": {"annotations": [{"start": 6, "end": 10, "label": "GENE", "score": 1.0, "_id": -4685428526827816387}, {"start": 35, "end": 50, "label": "CANCER", "score": 1.0, "_id": -611854743241672378}], "predictions": []}, "binary_relations": {"annotations": [{"head": -4685428526827816387, "tail": -611854743241672378, "label": "oncogene", "score": 1.0, "_id": -1790325547764256303}], "predictions": []}}
{"text": "Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cell lines and tissues with malignant progression.", "id": "11722842.s0", "metadata": {"CCS": "normalTOcancer", "CGE": "increased", "IGE": "unchanged", "PT": "observation", "cancer_type": "prostate", "expression_change_keyword_1": {"name": "over-expression", "pos": [99, 113], "type": "Gene_expression"}, "expression_change_keyword_2": {"name": "over-expression", "pos": [99, 113], "type": "Positive_regulation"}}, "labeled_spans": {"annotations": [{"start": 93, "end": 98, "label": "GENE", "score": 1.0, "_id": -2017777239235151954}, {"start": 118, "end": 133, "label": "CANCER", "score": 1.0, "_id": 4129617449961559606}], "predictions": []}, "binary_relations": {"annotations": [{"head": -2017777239235151954, "tail": 4129617449961559606, "label": "biomarker", "score": 1.0, "_id": 7993340717186791454}], "predictions": []}}
{"text": "We therefore conclude that MUC18 expression is increased during prostate cancer initiation (high grade PIN) and progression to carcinoma, and in metastatic cell lines and metastatic carcinoma.", "id": "11722842.s13", "metadata": {"CCS": "normalTOcancer", "CGE": "increased", "IGE": "unchanged", "PT": "observation", "cancer_type": "prostate", "expression_change_keyword_1": {"name": "expression", "pos": [33, 42], "type": "Gene_expression"}, "expression_change_keyword_2": {"name": "increased", "pos": [47, 55], "type": "Positive_regulation"}}, "labeled_spans": {"annotations": [{"start": 27, "end": 32, "label": "GENE", "score": 1.0, "_id": 5431679980839797458}, {"start": 64, "end": 79, "label": "CANCER", "score": 1.0, "_id": 1650882012654160466}], "predictions": []}, "binary_relations": {"annotations": [{"head": 5431679980839797458, "tail": 1650882012654160466, "label": "biomarker", "score": 1.0, "_id": -6073164971037079930}], "predictions": []}}
3 changes: 3 additions & 0 deletions tests/fixtures/dataset_dict/tbga_extract/metadata.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{
"document_type": "pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations"
}
3 changes: 3 additions & 0 deletions tests/fixtures/dataset_dict/tbga_extract/test/documents.jsonl
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{"text": "In addition, the combined cancer genome expression metaanalysis datasets included PDE11A among the top 1% down-regulated genes in PCa.", "id": null, "metadata": {"entity_ids": ["50940", "C0006826"], "entity_names": ["PDE11A", "Malignant Neoplasms"]}, "labeled_spans": {"annotations": [{"start": 82, "end": 88, "label": "ENTITY", "score": 1.0, "_id": -924809712458378694}, {"start": 26, "end": 32, "label": "ENTITY", "score": 1.0, "_id": -8300559430683946006}], "predictions": []}, "binary_relations": {"annotations": [{"head": -924809712458378694, "tail": -8300559430683946006, "label": "NA", "score": 1.0, "_id": -1873235480272460116}], "predictions": []}}
{"text": "We conclude that the CYGB gene is regulated by both promoter methylation and tumour hypoxia in HNSCC and that increased expression of this gene correlates with clincopathological measures of a tumour's biological aggression.", "id": null, "metadata": {"entity_ids": ["114757", "C0001807"], "entity_names": ["CYGB", "Aggressive behavior"]}, "labeled_spans": {"annotations": [{"start": 21, "end": 30, "label": "ENTITY", "score": 1.0, "_id": 4471756672664549063}, {"start": 213, "end": 223, "label": "ENTITY", "score": 1.0, "_id": -3820234498234956495}], "predictions": []}, "binary_relations": {"annotations": [{"head": 4471756672664549063, "tail": -3820234498234956495, "label": "NA", "score": 1.0, "_id": -1529179093863665121}], "predictions": []}}
{"text": "Thus, the role of SIVA in tumorigenesis remains unclear.", "id": null, "metadata": {"entity_ids": ["10572", "C0007621"], "entity_names": ["SIVA1", "Neoplastic Cell Transformation"]}, "labeled_spans": {"annotations": [{"start": 18, "end": 22, "label": "ENTITY", "score": 1.0, "_id": 3174421471102386276}, {"start": 26, "end": 39, "label": "ENTITY", "score": 1.0, "_id": -6496953722761076655}], "predictions": []}, "binary_relations": {"annotations": [{"head": 3174421471102386276, "tail": -6496953722761076655, "label": "NA", "score": 1.0, "_id": 2920545352474864205}], "predictions": []}}
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{"text": "A monocyte chemoattractant protein-1 gene polymorphism is associated with occult ischemia in a high-risk asymptomatic population.", "id": null, "metadata": {"entity_ids": ["6347", "C0231221"], "entity_names": ["CCL2", "Asymptomatic"]}, "labeled_spans": {"annotations": [{"start": 2, "end": 36, "label": "ENTITY", "score": 1.0, "_id": 5426963144202911262}, {"start": 105, "end": 117, "label": "ENTITY", "score": 1.0, "_id": 8375553621315725498}], "predictions": []}, "binary_relations": {"annotations": [{"head": 5426963144202911262, "tail": 8375553621315725498, "label": "NA", "score": 1.0, "_id": 8597812253194613001}], "predictions": []}}
{"text": "This study examined the effects of Her2 blockade on tumor angiogenesis, vascular architecture, and hypoxia in Her2(+) and Her2(-) MCF7 xenograft tumors.", "id": null, "metadata": {"entity_ids": ["2064", "C0242184"], "entity_names": ["ERBB2", "Hypoxia"]}, "labeled_spans": {"annotations": [{"start": 122, "end": 126, "label": "ENTITY", "score": 1.0, "_id": 8449701248948288217}, {"start": 99, "end": 106, "label": "ENTITY", "score": 1.0, "_id": -971867574717604855}], "predictions": []}, "binary_relations": {"annotations": [{"head": 8449701248948288217, "tail": -971867574717604855, "label": "NA", "score": 1.0, "_id": -2442696185288775855}], "predictions": []}}
{"text": "Eleven deleterious variants, six nonsense and five missense, were identified in seven genes: four LCA-associated genes (CEP290, IQCB1, NMNAT1, and RPGRIP1), one gene responsible for syndromic LCA (ALMS1), and two IRDs-related genes (CTNNA1 and CYP4V2).", "id": null, "metadata": {"entity_ids": ["80184", "C2931258"], "entity_names": ["CEP290", "Amaurosis congenita of Leber, type 1"]}, "labeled_spans": {"annotations": [{"start": 120, "end": 126, "label": "ENTITY", "score": 1.0, "_id": 3602497405587057427}, {"start": 98, "end": 101, "label": "ENTITY", "score": 1.0, "_id": 2172619519622247379}], "predictions": []}, "binary_relations": {"annotations": [{"head": 3602497405587057427, "tail": 2172619519622247379, "label": "genomic_alterations", "score": 1.0, "_id": 8689688816868215711}], "predictions": []}}
49 changes: 37 additions & 12 deletions tests/unit/core/test_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
import numpy
import pytest
import torch
from pyexpat import features
from pytorch_ie import Document
from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
from pytorch_ie.core import AnnotationList, annotation_field
Expand Down Expand Up @@ -203,9 +204,25 @@ def test_register_document_converter_mapping(dataset_with_converter_mapping):


def test_to_document_type_function(dataset_with_converter_functions):
# Features are only available for Dataset type (not for IterableDataset)
if isinstance(dataset_with_converter_functions, Dataset):
assert set(dataset_with_converter_functions.features) == {
"entities",
"relations",
"metadata",
"sentences",
"id",
"text",
}
else:
assert dataset_with_converter_functions.features is None
assert dataset_with_converter_functions.document_type == TestDocument
converted_dataset = dataset_with_converter_functions.to_document_type(TestDocumentWithLabel)
assert converted_dataset.document_type == TestDocumentWithLabel
if isinstance(converted_dataset, Dataset):
assert set(converted_dataset.features) == {"id", "label", "metadata", "text"}
else:
assert converted_dataset.features is None

assert len(converted_dataset.document_converters) == 0
for doc in converted_dataset:
Expand Down Expand Up @@ -485,8 +502,12 @@ def _empty_docs():
assert str(excinfo.value) == "No documents to create dataset from"


@pytest.mark.parametrize("as_list", [False, True])
def test_concatenate_datasets(maybe_iterable_dataset, dataset_with_converter_functions, as_list):
@pytest.mark.parametrize(
"as_list, clear_metadata", [(False, False), (False, True), (True, False), (True, True)]
)
def test_concatenate_datasets(
maybe_iterable_dataset, dataset_with_converter_functions, as_list, clear_metadata
):
# Tests four different cases of concatenation of list/dict of Datasets/IterableDatasets
if as_list:
# Test concatenation of list of datasets
Expand All @@ -495,11 +516,14 @@ def test_concatenate_datasets(maybe_iterable_dataset, dataset_with_converter_fun
maybe_iterable_dataset["train"],
maybe_iterable_dataset["validation"],
maybe_iterable_dataset["test"],
]
],
clear_metadata=clear_metadata,
)
else:
# Test concatenation of dictionary of datasets
concatenated_dataset = concatenate_datasets(maybe_iterable_dataset)
concatenated_dataset = concatenate_datasets(
maybe_iterable_dataset, clear_metadata=clear_metadata
)

# Check correct output type
if isinstance(maybe_iterable_dataset["train"], IterableDataset):
Expand Down Expand Up @@ -539,15 +563,17 @@ def test_concatenate_datasets_errors(dataset_with_converter_functions):
# Test concatenation of empty datasets
empty_dataset = list[Dataset]()
with pytest.raises(ValueError) as excinfo:
concatenate_datasets(empty_dataset)
concatenate_datasets(empty_dataset, clear_metadata=False)
assert str(excinfo.value) == "No datasets to concatenate"

# Test concatenation of datasets with different document types
dataset_with_converted_doc = dataset_with_converter_functions.to_document_type(
TestDocumentWithLabel
)
with pytest.raises(ValueError) as excinfo:
concatenate_datasets([dataset_with_converter_functions, dataset_with_converted_doc])
concatenate_datasets(
[dataset_with_converter_functions, dataset_with_converted_doc], clear_metadata=False
)
assert str(excinfo.value) == "All datasets must have the same document type to concatenate"


Expand All @@ -556,7 +582,7 @@ def test_add_dset_name_to_document():
doc = Document()
assert not hasattr(doc, "metadata")
with pytest.raises(ValueError) as excinfo:
_add_dset_name_to_document(doc, "test")
_add_dset_name_to_document(doc, "test", clear_metadata=False)
assert (
str(excinfo.value)
== "Document does not have metadata attribute which required to save the dataset name: Document()"
Expand All @@ -565,10 +591,9 @@ def test_add_dset_name_to_document():
# Test adding dataset name to document
doc.metadata = {}
assert hasattr(doc, "metadata")
_add_dset_name_to_document(doc, "test_dataset_name")
_add_dset_name_to_document(doc, "test_dataset_name", clear_metadata=False)
assert doc.metadata["dataset_name"] == "test_dataset_name"

# Test document already having dataset_name in metadata
with pytest.raises(ValueError) as excinfo:
_add_dset_name_to_document(doc, "test")
assert str(excinfo.value) == "Document already has a dataset_name attribute: test_dataset_name"
# Test document already having dataset_name in metadata keeps the old name
_add_dset_name_to_document(doc, "test", clear_metadata=False)
assert doc.metadata["dataset_name"] == "test_dataset_name"
33 changes: 32 additions & 1 deletion tests/unit/core/test_dataset_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,13 @@
from pytorch_ie.core import AnnotationList, Document, annotation_field
from pytorch_ie.documents import TextBasedDocument, TextDocument

from pie_datasets import Dataset, DatasetDict, IterableDataset, load_dataset
from pie_datasets import (
Dataset,
DatasetDict,
IterableDataset,
concatenate_dataset_dicts,
load_dataset,
)
from pie_datasets.core.dataset_dict import (
EnterDatasetDictMixin,
EnterDatasetMixin,
Expand Down Expand Up @@ -632,3 +638,28 @@ def test_load_dataset_conll2003_wrong_type_single_split():
"<class 'datasets.dataset_dict.IterableDatasetDict'>, <class 'pie_datasets.core.dataset.Dataset'>, "
"or <class 'pie_datasets.core.dataset.IterableDataset'>, but got <class 'datasets.arrow_dataset.Dataset'>"
)


@pytest.fixture
def tbga_extract():
return DatasetDict.from_json(data_dir=FIXTURES_ROOT / "dataset_dict" / "tbga_extract")


@pytest.fixture
def comagc_extract():
return DatasetDict.from_json(data_dir=FIXTURES_ROOT / "dataset_dict" / "comagc_extract")


def test_concatenate_dataset_dicts(tbga_extract, comagc_extract):
concatenated_dataset = concatenate_dataset_dicts(
inputs={"tbga": tbga_extract, "comagc": comagc_extract},
split_mappings={"train": {"tbga": "train", "comagc": "train"}},
clear_metadata=True,
)

assert len(concatenated_dataset["train"]) == len(tbga_extract["train"]) + len(
comagc_extract["train"]
)
assert all(
[ds.metadata["dataset_name"] in ["tbga", "comagc"] for ds in concatenated_dataset["train"]]
)
Loading