-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #14 from ArneBinder/add_conll2003_dataset
add conll2003 dataset
- Loading branch information
Showing
3 changed files
with
186 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# PIE Dataset Card for "conll2003" | ||
|
||
This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the | ||
[CoNLL 2003 Huggingface dataset loading script](https://huggingface.co/datasets/conll2003). | ||
|
||
## Data Schema | ||
|
||
The document type for this dataset is `CoNLL2003Document` which defines the following data fields: | ||
|
||
- `text` (str) | ||
- `id` (str, optional) | ||
- `metadata` (dictionary, optional) | ||
|
||
and the following annotation layers: | ||
|
||
- `entities` (annotation type: `LabeledSpan`, target: `text`) | ||
|
||
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/annotations.py) for the definitions of | ||
the annotation types. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
from dataclasses import dataclass | ||
|
||
import datasets | ||
import pytorch_ie.data.builder | ||
from pytorch_ie.annotations import LabeledSpan | ||
from pytorch_ie.core import AnnotationList, annotation_field | ||
from pytorch_ie.documents import TextDocument, TextDocumentWithLabeledSpans | ||
from pytorch_ie.utils.span import tokens_and_tags_to_text_and_labeled_spans | ||
|
||
|
||
@dataclass | ||
class CoNLL2003Document(TextDocument): | ||
entities: AnnotationList[LabeledSpan] = annotation_field(target="text") | ||
|
||
|
||
class Conll2003(pytorch_ie.data.builder.GeneratorBasedBuilder): | ||
DOCUMENT_TYPE = CoNLL2003Document | ||
|
||
BASE_DATASET_PATH = "conll2003" | ||
|
||
BUILDER_CONFIGS = [ | ||
datasets.BuilderConfig( | ||
name="conll2003", version=datasets.Version("1.0.0"), description="CoNLL2003 dataset" | ||
), | ||
] | ||
|
||
DOCUMENT_CONVERTERS = { | ||
TextDocumentWithLabeledSpans: { | ||
# just rename the layer | ||
"entities": "labeled_spans", | ||
} | ||
} | ||
|
||
def _generate_document_kwargs(self, dataset): | ||
return {"int_to_str": dataset.features["ner_tags"].feature.int2str} | ||
|
||
def _generate_document(self, example, int_to_str): | ||
doc_id = example["id"] | ||
tokens = example["tokens"] | ||
ner_tags = [int_to_str(tag) for tag in example["ner_tags"]] | ||
|
||
text, ner_spans = tokens_and_tags_to_text_and_labeled_spans(tokens=tokens, tags=ner_tags) | ||
|
||
document = CoNLL2003Document(text=text, id=doc_id) | ||
|
||
for span in sorted(ner_spans, key=lambda span: span.start): | ||
document.entities.append(span) | ||
|
||
return document |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import datasets | ||
import pytest | ||
from pytorch_ie import DatasetDict | ||
from pytorch_ie.core import Document | ||
from pytorch_ie.documents import TextDocumentWithLabeledSpans | ||
|
||
from dataset_builders.pie.conll2003.conll2003 import Conll2003 | ||
from tests.dataset_builders.common import PIE_BASE_PATH | ||
|
||
DATASET_NAME = "conll2003" | ||
PIE_DATASET_PATH = PIE_BASE_PATH / DATASET_NAME | ||
HF_DATASET_PATH = Conll2003.BASE_DATASET_PATH | ||
SPLIT_NAMES = {"train", "validation", "test"} | ||
SPLIT_SIZES = {"train": 14041, "validation": 3250, "test": 3453} | ||
|
||
|
||
@pytest.fixture(params=[config.name for config in Conll2003.BUILDER_CONFIGS], scope="module") | ||
def dataset_name(request): | ||
return request.param | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def hf_dataset(dataset_name): | ||
return datasets.load_dataset(str(HF_DATASET_PATH), name=dataset_name) | ||
|
||
|
||
def test_hf_dataset(hf_dataset): | ||
assert set(hf_dataset) == SPLIT_NAMES | ||
split_sizes = {split_name: len(ds) for split_name, ds in hf_dataset.items()} | ||
assert split_sizes == SPLIT_SIZES | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def hf_example(hf_dataset): | ||
return hf_dataset["train"][0] | ||
|
||
|
||
def test_hf_example(hf_example, dataset_name): | ||
if dataset_name == "conll2003": | ||
assert hf_example == { | ||
"chunk_tags": [11, 21, 11, 12, 21, 22, 11, 12, 0], | ||
"id": "0", | ||
"ner_tags": [3, 0, 7, 0, 0, 0, 7, 0, 0], | ||
"pos_tags": [22, 42, 16, 21, 35, 37, 16, 21, 7], | ||
"tokens": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."], | ||
} | ||
else: | ||
raise ValueError(f"Unknown dataset name: {dataset_name}") | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def document(hf_example, hf_dataset): | ||
conll2003 = Conll2003() | ||
generate_document_kwargs = conll2003._generate_document_kwargs(hf_dataset["train"]) | ||
document = conll2003._generate_document(example=hf_example, **generate_document_kwargs) | ||
return document | ||
|
||
|
||
def test_document(document, dataset_name): | ||
assert isinstance(document, Document) | ||
if dataset_name == "conll2003": | ||
assert document.text == "EU rejects German call to boycott British lamb ." | ||
entities = list(document.entities) | ||
assert len(entities) == 3 | ||
assert str(entities[0]) == "EU" | ||
assert str(entities[1]) == "German" | ||
assert str(entities[2]) == "British" | ||
else: | ||
raise ValueError(f"Unknown dataset name: {dataset_name}") | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def pie_dataset(dataset_name): | ||
return DatasetDict.load_dataset(str(PIE_DATASET_PATH), name=dataset_name) | ||
|
||
|
||
def test_pie_dataset(pie_dataset): | ||
assert set(pie_dataset) == SPLIT_NAMES | ||
split_sizes = {split_name: len(ds) for split_name, ds in pie_dataset.items()} | ||
assert split_sizes == SPLIT_SIZES | ||
|
||
|
||
@pytest.fixture(scope="module", params=list(Conll2003.DOCUMENT_CONVERTERS)) | ||
def converter_document_type(request): | ||
return request.param | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def converted_pie_dataset(pie_dataset, converter_document_type): | ||
pie_dataset_converted = pie_dataset.to_document_type(document_type=converter_document_type) | ||
return pie_dataset_converted | ||
|
||
|
||
def test_converted_pie_dataset(converted_pie_dataset, converter_document_type): | ||
assert set(converted_pie_dataset) == SPLIT_NAMES | ||
split_sizes = {split_name: len(ds) for split_name, ds in converted_pie_dataset.items()} | ||
assert split_sizes == SPLIT_SIZES | ||
for ds in converted_pie_dataset.values(): | ||
for document in ds: | ||
assert isinstance(document, converter_document_type) | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def converted_document(converted_pie_dataset): | ||
return converted_pie_dataset["train"][0] | ||
|
||
|
||
def test_converted_document(converted_document, converter_document_type): | ||
assert isinstance(converted_document, converter_document_type) | ||
if converter_document_type == TextDocumentWithLabeledSpans: | ||
assert converted_document.text == "EU rejects German call to boycott British lamb ." | ||
entities = list(converted_document.labeled_spans) | ||
assert len(entities) == 3 | ||
assert str(entities[0]) == "EU" | ||
assert str(entities[1]) == "German" | ||
assert str(entities[2]) == "British" | ||
else: | ||
raise ValueError(f"Unknown converter document type: {converter_document_type}") |