Skip to content

Commit

Permalink
bugs: smoothing, edge optimization, feature generation (#46)
Browse files Browse the repository at this point in the history
Co-authored-by: anna-grim <[email protected]>
  • Loading branch information
anna-grim and anna-grim authored Feb 2, 2024
1 parent e3baa3b commit da83bda
Show file tree
Hide file tree
Showing 7 changed files with 225 additions and 144 deletions.
2 changes: 1 addition & 1 deletion src/deep_neurographs/densegraph.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from scipy.spatial import KDTree

from deep_neurographs import swc_utils, utils
from deep_neurographs.geometry_utils import dist as get_dist
from deep_neurographs.geometry import dist as get_dist


class DenseGraph:
Expand Down
212 changes: 111 additions & 101 deletions src/deep_neurographs/feature_extraction.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,11 @@
from random import sample

import numpy as np
import tensorstore as ts

from deep_neurographs import geometry_utils, utils
from deep_neurographs import geometry
from deep_neurographs import graph_utils as gutils
from deep_neurographs import utils

CHUNK_SIZE = [64, 64, 64]
WINDOW = [5, 5, 5]
Expand All @@ -31,12 +34,7 @@

# -- Wrappers --
def generate_mutable_features(
neurograph,
model_type,
anisotropy=[1.0, 1.0, 1.0],
img_path=None,
labels_path=None,
proposal_list=None,
neurograph, model_type, img_path=None, labels_path=None, proposals=None
):
"""
Generates feature vectors for every edge proposal in a neurograph.
Expand All @@ -47,16 +45,13 @@ def generate_mutable_features(
NeuroGraph generated from a directory of swcs generated from a
predicted segmentation.
model_type : str
Indication of model to be trained. Options include: AdaBoost,
RandomForest, FeedForwardNet, ConvNet, MultiModalNet.
anisotropy : list[float], optional
Real-world to image coordinates scaling factor for (x, y, z).
The default is [1.0, 1.0, 1.0].
Type of model to be trained. Options include: AdaBoost, RandomForest,
FeedForwardNet, ConvNet, MultiModalNet.
img_path : str, optional
Path to raw image. The default is None.
labels_path : str, optional
Path to predicted segmentation. The default is None.
proposal_list : list[frozenset], optional
proposals : list[frozenset], optional
List of edge proposals for which features will be generated. The
default is None.
Expand All @@ -68,83 +63,63 @@ def generate_mutable_features(
"""
features = {
"skel": generate_mutable_skel_features(
neurograph, proposal_list=proposal_list
)
"skel": generate_skel_features(neurograph, proposals=proposals)
}
if model_type in ["ConvNet", "MultiModalNet"]:
features["img_chunks"] = generate_img_chunks(
features["img_chunks"], features["img_profile"] = generate_img_chunks(
neurograph,
img_path,
labels_path,
anisotropy=anisotropy,
proposal_list=proposal_list,
model_type=model_type,
proposals=proposals,
)
if model_type != "ConvNet":
if model_type in ["AdaBoost", "RandomForest", "FeedForwardNet"]:
features["img_profile"] = generate_img_profiles(
neurograph,
img_path,
anisotropy=anisotropy,
proposal_list=proposal_list,
neurograph, img_path, proposals=proposals
)
return features


# -- Edge feature extraction --
def generate_img_chunks(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=None,
neurograph, img_path, labels_path, model_type=None, proposals=None
):
if neurograph.bbox:
return generate_img_chunks_via_superchunk(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=proposal_list,
neurograph, img_path, labels_path, proposals=proposals
)
else:
return generate_img_chunks_via_multithreading(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=proposal_list,
return generate_img_chunks_via_multithreads(
neurograph, img_path, labels_path, proposals=proposals
)


def generate_img_chunks_via_multithreading(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=None,
def generate_img_chunks_via_multithreads(
neurograph, img_path, labels_path, proposals=None
):
features = dict()
img = utils.open_tensorstore(img_path, 'neuroglancer_precomputed')
labels = utils.open_tensorstore(labels_path, 'neuroglancer_precomputed')
img = utils.open_tensorstore(img_path, "zarr")
labels = utils.open_tensorstore(labels_path, "neuroglancer_precomputed")
with ThreadPoolExecutor() as executor:
threads = [None] * len(proposal_list)
for i, edge in enumerate(proposal_list):
# Assign Threads
threads = [None] * len(proposals)
for i, edge in enumerate(proposals):
xyz_i, xyz_j = gutils.get_edge_attr(neurograph, edge, "xyz")
threads[i] = executor.submit(
get_img_chunk, img, labels, xyz_i, xyz_j, edge
get_img_chunk_features, img, labels, xyz_i, xyz_j, edge
)

# Save result
chunks = dict()
profiles = dict()
for thread in as_completed(threads):
edge, result = thread.result()
features[edge] = result
return features
edge, chunk, profile = thread.result()
chunks[edge] = chunk
profiles[edge] = profile
return chunks, profiles


def generate_img_chunks_via_superchunk(
neurograph,
img_path,
labels_path,
anisotropy=[1.0, 1.0, 1.0],
proposal_list=None,
neurograph, img_path, labels_path, proposals=None
):
"""
Generates an image chunk for each edge proposal such that the centroid of
Expand All @@ -160,10 +135,7 @@ def generate_img_chunks_via_superchunk(
Path to raw image.
labels_path : str
Path to predicted segmentation.
anisotropy : list[float], optional
Real-world to image coordinates scaling factor for (x, y, z).
The default is [1.0, 1.0, 1.0].
proposal_list : list[frozenset], optional
proposals : list[frozenset], optional
List of edge proposals for which features will be generated. The
default is None.
Expand All @@ -173,47 +145,90 @@ def generate_img_chunks_via_superchunk(
Dictonary such that each pair is the edge id and image chunk.
"""
features = dict()
chunk_features = dict()
profile_features = dict()
origin = utils.apply_anisotropy(neurograph.origin, return_int=True)
img, labels = utils.get_superchunks(
img_path, labels_path, origin, neurograph.shape, from_center=False
)
img = utils.normalize_img(img)
for edge in neurograph.mutable_edges:
# Compute image coordinates
i, j = tuple(edge)
xyz = get_edge_attr(neurograph, edge, "xyz")
xyz = gutils.get_edge_attr(neurograph, edge, "xyz")
xyz_i = utils.world_to_img(neurograph, xyz[0])
xyz_j = utils.world_to_img(neurograph, xyz[1])
features[edge] = get_img_chunk(img, labels, xyz_i, xyz_j)
return features
chunk, profile = get_img_chunk_features(img, labels, xyz_i, xyz_j)
chunk_features[edge] = chunk
profile_features[edge] = profile
return chunk_features, profile_features


def get_img_chunk(img, labels, xyz_i, xyz_j, process_id=None):
def get_img_chunk_features(img, labels, xyz_i, xyz_j, process_id=None):
# Extract chunks
midpoint = geometry_utils.get_midpoint(xyz_i, xyz_j).astype(int)
img_chunk = utils.get_chunk(img, midpoint, CHUNK_SIZE)
labels_chunk = utils.get_chunk(labels, midpoint, CHUNK_SIZE)
midpoint = geometry.get_midpoint(xyz_i, xyz_j).astype(int)
if type(img) == ts.TensorStore:
img_chunk = utils.read_tensorstore(img, midpoint, CHUNK_SIZE)
labels_chunk = utils.read_tensorstore(labels, midpoint, CHUNK_SIZE)
else:
img_chunk = utils.get_chunk(img, midpoint, CHUNK_SIZE)
labels_chunk = utils.get_chunk(labels, midpoint, CHUNK_SIZE)

# Mark path
d = int(geometry_utils.dist(xyz_i, xyz_j) + 5)
img_coords_i = utils.img_to_patch(xyz_i, midpoint, CHUNK_SIZE)
img_coords_j = utils.img_to_patch(xyz_j, midpoint, CHUNK_SIZE)
path = geometry_utils.make_line(img_coords_i, img_coords_j, d)
# Coordinate transform
img_chunk = utils.normalize_img(img_chunk)
xyz_i = utils.img_to_patch(xyz_i, midpoint, CHUNK_SIZE)
xyz_j = utils.img_to_patch(xyz_j, midpoint, CHUNK_SIZE)

# Generate features
path = geometry.make_line(xyz_i, xyz_j, N_PROFILE_POINTS)
profile = geometry.get_profile(img_chunk, path, window=WINDOW)
labels_chunk[labels_chunk > 0] = 1
labels_chunk = geometry_utils.fill_path(labels_chunk, path, val=2)
labels_chunk = geometry.fill_path(labels_chunk, path, val=2)
chunk = np.stack([img_chunk, labels_chunk], axis=0)

# Output
if process_id:
return np.stack([img_chunk, labels_chunk], axis=0), process_id
return process_id, chunk, profile
else:
return chunk, profile


def generate_img_profiles(neurograph, path, proposals=None):
if neurograph.bbox:
return generate_img_profiles_via_superchunk(
neurograph, path, proposals=proposals
)
else:
return np.stack([img_chunk, labels_chunk], axis=0)
return generate_img_profiles_via_multithreads(
neurograph, path, proposals=proposals
)


def generate_img_profiles(
neurograph, path, anisotropy=[1.0, 1.0, 1.0], proposal_list=None
def generate_img_profiles_via_multithreads(
neurograph, img_path, proposals=None
):
profile_features = dict()
img = utils.open_tensorstore(img_path, "zarr")
with ThreadPoolExecutor() as executor:
# Assign threads
threads = [None] * len(proposals)
for i, edge in enumerate(proposals):
xyz_i, xyz_j = gutils.get_edge_attr(neurograph, edge, "xyz")
xyz_i = utils.world_to_img(neurograph, xyz_i)
xyz_j = utils.world_to_img(neurograph, xyz_j)
line = geometry.make_line(xyz_i, xyz_j, N_PROFILE_POINTS)
threads[i] = executor.submit(geometry.get_profile, img, line, edge)

# Store result
for thread in as_completed(threads):
edge, profile = thread.result()
profile_features[edge] = profile
return profile_features


def generate_img_profiles_via_superchunk(neurograph, path, proposals=None):
"""
Generates an image intensity profile along each edge proposal.
Generates an image intensity profile along each edge proposal by reading
a single superchunk from cloud that contains all proposals.
Parameters
----------
Expand All @@ -222,10 +237,7 @@ def generate_img_profiles(
predicted segmentation.
path : str
Path to raw image.
anisotropy : list[float], optional
Real-world to image coordinates scaling factor for (x, y, z).
The default is [1.0, 1.0, 1.0].
proposal_list : list[frozenset], optional
proposals : list[frozenset], optional
List of edge proposals for which features will be generated. The
default is None.
Expand All @@ -246,12 +258,12 @@ def generate_img_profiles(
xyz_i, xyz_j = neurograph.get_edge_attr(edge, "xyz")
xyz_i = utils.world_to_img(neurograph, xyz_i)
xyz_j = utils.world_to_img(neurograph, xyz_j)
path = geometry_utils.make_line(xyz_i, xyz_j, N_PROFILE_POINTS)
features[edge] = geometry_utils.get_profile(img, path, window=WINDOW)
path = geometry.make_line(xyz_i, xyz_j, N_PROFILE_POINTS)
features[edge] = geometry.get_profile(img, path, window=WINDOW)
return features


def generate_mutable_skel_features(neurograph, proposal_list=None):
def generate_skel_features(neurograph, proposals=None):
features = dict()
for edge in neurograph.mutable_edges:
i, j = tuple(edge)
Expand All @@ -275,20 +287,18 @@ def generate_mutable_skel_features(neurograph, proposal_list=None):
def get_directionals(neurograph, edge, window):
# Compute tangent vectors
i, j = tuple(edge)
edge_directional = geometry_utils.compute_tangent(
neurograph.edges[edge]["xyz"]
)
directional_i = geometry_utils.get_directional(
neurograph, i, edge_directional, window=window
edge_direction = geometry.compute_tangent(neurograph.edges[edge]["xyz"])
direction_i = geometry.get_directional(
neurograph, i, edge_direction, window=window
)
directional_j = geometry_utils.get_directional(
neurograph, j, edge_directional, window=window
direction_j = geometry.get_directional(
neurograph, j, edge_direction, window=window
)

# Compute features
inner_product_1 = abs(np.dot(edge_directional, directional_i))
inner_product_2 = abs(np.dot(edge_directional, directional_j))
inner_product_3 = np.dot(directional_i, directional_j)
inner_product_1 = abs(np.dot(edge_direction, direction_i))
inner_product_2 = abs(np.dot(edge_direction, direction_j))
inner_product_3 = np.dot(direction_i, direction_j)
return np.array([inner_product_1, inner_product_2, inner_product_3])


Expand Down
Loading

0 comments on commit da83bda

Please sign in to comment.