-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature: add StudioRunnerRepository, StudioEvaluationRepository and S…
…tudioAggregationRepository
- Loading branch information
Showing
16 changed files
with
811 additions
and
39 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
127 changes: 127 additions & 0 deletions
127
src/documentation/how_tos/how_to_create_a_dataset_using_studio.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from collections.abc import Sequence\n", | ||
"\n", | ||
"from pydantic import BaseModel\n", | ||
"\n", | ||
"from intelligence_layer.evaluation import Example\n", | ||
"from intelligence_layer.evaluation.dataset.studio_dataset_repository import StudioDatasetRepository\n", | ||
"from intelligence_layer.connectors.data import DataClient" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# How to create a dataset\n", | ||
"\n", | ||
"0. Collect data for examples.\n", | ||
"1. Convert data to `Example`s.\n", | ||
"1. Create a `DatasetRepository`.\n", | ||
"2. Store `Example`s to `DatasetRepository`.\n", | ||
"3. Remember the dataset id." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Example" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"65421249-cdea-4a98-a5c8-0ed9280869d5\n", | ||
"{'label2', 'label1'}\n", | ||
"{'key_a': ['a', 'b'], 'key_b': 'value'}\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"class StoryTaskInput(BaseModel): # Should already be implemented in your task\n", | ||
" topic: str\n", | ||
" targeted_word_count: int\n", | ||
"\n", | ||
"\n", | ||
"class StoryTaskExpectedOutput(BaseModel): # Should already be implemented in your task\n", | ||
" keywords: Sequence[str]\n", | ||
"\n", | ||
"\n", | ||
"# Step 1\n", | ||
"examples = [\n", | ||
" Example(\n", | ||
" input=StoryTaskInput(topic=\"rain\", targeted_word_count=42),\n", | ||
" expected_output=StoryTaskExpectedOutput(keywords=[\"wet\"]),\n", | ||
" metadata={\n", | ||
" \"author\": \"Shakespeare\"\n", | ||
" }, # the metadata is optional and can contain custom information\n", | ||
" ),\n", | ||
" # ...\n", | ||
"]*10\n", | ||
"\n", | ||
"# Step 2 - Use FileDatasetRepository or HuggingFaceDatasetRepository for persistence\n", | ||
"dataset_repository = StudioDatasetRepository(\n", | ||
" repository_id=\"<repository_id>\",\n", | ||
" data_client=DataClient(\n", | ||
" token=\"your_token\",\n", | ||
" base_data_platform_url=\"http://localhost:8080\",\n", | ||
" ),\n", | ||
")\n", | ||
"\n", | ||
"# Step 3\n", | ||
"dataset = dataset_repository.create_dataset(\n", | ||
" examples=examples,\n", | ||
" dataset_name=\"StoryDataset\",\n", | ||
" labels=set([\"label1\", \"label2\"]),\n", | ||
" metadata=dict({\"key_a\": [\"a\", \"b\"], \"key_b\": \"value\"}),\n", | ||
")\n", | ||
"\n", | ||
"# Step 4\n", | ||
"print(dataset.id)\n", | ||
"print(dataset.labels)\n", | ||
"print(dataset.metadata)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "intelligence-layer-dgcJwC7l-py3.11", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
130 changes: 130 additions & 0 deletions
130
src/documentation/how_tos/how_to_evaluate_runs_using_studio_evaluation_repository.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from pathlib import Path\n", | ||
"from fsspec.implementations.local import LocalFileSystem\n", | ||
"\n", | ||
"from example_data import DummyEvaluationLogic, example_data, DummyEvaluation\n", | ||
"\n", | ||
"from intelligence_layer.evaluation import Evaluator, StudioEvaluationRepository\n", | ||
"from intelligence_layer.evaluation.dataset.studio_dataset_repository import StudioDatasetRepository\n", | ||
"from intelligence_layer.connectors.data.data import DataClient" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# How to evaluate runs\n", | ||
"0. Run your tasks on the datasets where you want to evaluate them on (see [here](./how_to_run_a_task_on_a_dataset.ipynb))\n", | ||
" - When evaluating multiple runs, all of them need the same data types \n", | ||
"2. Initialize all necessary repositories for the `Evaluator`, and an `EvaluationLogic`.\n", | ||
"3. Run the evaluator to evaluate all examples and create a single `EvaluationOverview`\n", | ||
"4. (Optional) Save the evaluation id for later use" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Example" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Evaluating: 2it [00:00, 31300.78it/s]" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"\n", | ||
"Evaluating: 2it [00:00, 28532.68it/s]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Step 0\n", | ||
"\n", | ||
"my_example_data = example_data()\n", | ||
"run_ids = [my_example_data.run_overview_1.id, my_example_data.run_overview_2.id]\n", | ||
"\n", | ||
"\n", | ||
"# Step 1\n", | ||
"studio_dataset_repository = StudioDatasetRepository(\n", | ||
" repository_id=\"<your_repository_id>\",\n", | ||
" data_client=DataClient(token=\"<your_token>\", base_data_platform_url=\"http://localhost:8080\"),\n", | ||
")\n", | ||
"dataset_repository = my_example_data.dataset_repository\n", | ||
"run_repository = my_example_data.run_repository\n", | ||
"evaluation_repository = StudioEvaluationRepository(\n", | ||
" file_system=LocalFileSystem(True),\n", | ||
" root_directory=Path(\"evals\"),\n", | ||
" studio_dataset_repository=studio_dataset_repository,\n", | ||
" evaluation_type=DummyEvaluation,\n", | ||
")\n", | ||
"evaluation_logic = DummyEvaluationLogic()\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"# Step 3\n", | ||
"evaluator = Evaluator(\n", | ||
" dataset_repository,\n", | ||
" run_repository,\n", | ||
" evaluation_repository,\n", | ||
" \"My dummy evaluation\",\n", | ||
" evaluation_logic,\n", | ||
")\n", | ||
"\n", | ||
"evaluation_overview = evaluator.evaluate_runs(\n", | ||
" *run_ids, labels=set({\"label\"}), metadata=dict({\"key\": \"value\"})\n", | ||
")\n", | ||
"\n", | ||
"# Step 4\n", | ||
"print(evaluation_overview.id)\n", | ||
"print(evaluation_overview.metadata)\n", | ||
"print(evaluation_overview.labels)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "intelligence-layer-d3iSWYpm-py3.10", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
101 changes: 101 additions & 0 deletions
101
src/documentation/how_tos/how_to_run_a_task_on_a_dataset_using_studio_repository.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from example_data import DummyTask, example_data\n", | ||
"\n", | ||
"from intelligence_layer.evaluation.run.studio_runner_repository import (\n", | ||
" StudioRunnerRepository, \n", | ||
")\n", | ||
"from intelligence_layer.evaluation.run.runner import Runner\n", | ||
"from intelligence_layer.evaluation.dataset.studio_dataset_repository import StudioDatasetRepository\n", | ||
"from intelligence_layer.connectors.data.data import DataClient\n", | ||
"\n", | ||
"from fsspec.implementations.local import LocalFileSystem" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from pathlib import Path\n", | ||
"\n", | ||
"studio_dataset_repository = StudioDatasetRepository(\n", | ||
" repository_id=\"<your_repository_id>\",\n", | ||
" data_client=DataClient(token=\"<your_token>\", base_data_platform_url=\"http://localhost:8080\"),\n", | ||
")\n", | ||
"run_repository = StudioRunnerRepository(\n", | ||
" file_system=LocalFileSystem(True),\n", | ||
" root_directory=Path(\"runs\"),\n", | ||
" output_type=str,\n", | ||
" studio_dataset_repository=studio_dataset_repository,\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# How to run a task on a dataset\n", | ||
"0. Create a suitable dataset (see [here](./how_to_create_a_dataset.ipynb)) and a task (see [here](./how_to_implement_a_task.ipynb)).\n", | ||
"1. Initialize the task and a `RunRepository`, and open the correct `DatasetRepository`\n", | ||
" - The `DatasetRepository` needs to contain the dataset.\n", | ||
" - The `RunRepository` stores results.\n", | ||
"2. Use the `Runner` to run the task on the given dataset via `run_dataset`\n", | ||
"3. Save the id of the resulting `RunOverview`\n", | ||
"\n", | ||
"### Example" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Step 0\n", | ||
"my_example_data = example_data()\n", | ||
"print()\n", | ||
"\n", | ||
"# Step 1\n", | ||
"dataset_repository = my_example_data.dataset_repository\n", | ||
"\n", | ||
"task = DummyTask()\n", | ||
"\n", | ||
"# Step 2\n", | ||
"runner = Runner(task, dataset_repository, run_repository, \"MyRunDescription\")\n", | ||
"run_overview = runner.run_dataset(my_example_data.dataset.id)\n", | ||
"\n", | ||
"# Step 3\n", | ||
"print(run_overview.id)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "intelligence-layer-d3iSWYpm-py3.10", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.