Skip to content

ADiko1997/ReViT

Repository files navigation

ReViT: Enhancing Vision Transformers with Attention Residual Connections for Visual Recognition

Official PyTorch implementation of ReViT
arxiv

Alt text

ReViT is transformer architecture that exploits residual attention learning and serves as a general vision backbone for different visual recognition tasks:

Image Classification: Included in this repo.

Object Detection and Instance Segmentation: Implemented using mmdetection (https://github.com/open-mmlab/mmdetection) (Contact [email protected] for code and weights)

We build our model on top of mvitv2 soure code for ReMViTv2 and TIMM for ReSwin.

Results and Pre-trained Models

ImageNet-1K trained models

name resolution acc@1 #params FLOPs Weights
ReViT-B 224x224 82.4 86M 17.5G model
ReMViTv2-T 224x224 82.7 24M 4.7G model
ReSwin-T 224x224 81.5 29M 4.5G model

Installation

To run the project we suggest the use of a Docker environment following the docker setup found in Docker/Dockerfile

Training

Here we can train a standard ReViT model from scratch by:

python main.py \
  --config_path config/config-ReViT-B.yaml \
  --num_gpus 2 \

To customize any hyperparemeter please check the config/config-ReViT-B.yaml file. Additionally, we suggest training on multiple GPUs to have improved results compared to those reported in the above. NOTE: Training ReViT on 2 V100 GPUs takes around 9 days and around 15 days with one GPU.

Evaluation

Here we can perform evaluation for ReViT with the following command:

python main.py \
  --config_path config/config-ReViT-B.yaml \
  --num_gpus 2 \

Note that in config/config-ReViT-B.yaml a training flag is found and has to be set to False in order to perform an evaluation step. Weights will be available after the double blind review if accepted for the camera session.

Directory structure

.
├── config
│   ├── config-ReViT-B.yaml
│   ├── config-ReSwin-T.yaml
│   ├── config-ReMViTv2-T.yaml
├── dataset
│   ├── data.py
│   ├── mixup.py
│   ├── rand_augment.py
│   ├── random_erasing.py
│   ├── transform.py
│   └── utils.py
├── Docker
│   ├── docker_commands.txt
│   ├── Dockerfile
│   ├── Dockerfile_detector
│   ├── os_requirements.txt
│   └── requirements.txt
├── epoch.py
├── main.py
├── model
│   ├── attention.py
│   ├── common.py
│   ├── loss.py
│   ├── lr_policy.py
│   ├── mmvit_model.py
│   ├── mmvit_model_.py
│   ├── optimizer.py
│   ├── swin_old.py
│   ├── swin.py
├── Readme.md
├── ReViT_attention_maps_eagle.png
├── ReViT.pdf
├── ReViT.png
├── run.py
├── trash
├── utils
│   ├── distributed.py
│   ├── metrics
│   ├── metrics.py
│   ├── model_stats.py
├── visualizer.ipynb

License

The software is release for research use only under the MIT License

About

ReViT - Residual Attention Vision Transformer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published