-
Notifications
You must be signed in to change notification settings - Fork 1
/
img_show.py
224 lines (181 loc) · 5.4 KB
/
img_show.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import matplotlib.colors as cl
from PIL import Image
UNKNOWN_FLOW_THRESH = 1e7
SMALLFLOW = 0.0
LARGEFLOW = 1e8
def make_color_wheel():
"""
Generate color wheel according Middlebury color code
:return: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
def compute_color(u, v):
"""
compute optical flow color map
:param u: optical flow horizontal map
:param v: optical flow vertical map
:return: optical flow in color code
"""
[h, w] = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(0, np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def flow_to_image(flow, display=False):
"""
Convert flow into middlebury color code image
:param flow: optical flow map
:return: optical flow image in middlebury color
"""
u = flow[:, :, 0]
v = flow[:, :, 1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
u[idxUnknow] = 0
v[idxUnknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(-1, np.max(rad))
if display:
print("max flow: %.4f\nflow range:\nu = %.3f .. %.3f\nv = %.3f .. %.3f" % (maxrad, minu,maxu, minv, maxv))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
img[idx] = 0
return np.uint8(img)
def tensor2array_flow(flow):
flow = flow.detach().cpu().numpy().transpose(1,2,0)
img = flow_to_image(flow)
array = img.transpose(2,0,1)
return array
def show_flow(flow):
"""
visualize optical flow map using matplotlib
:param filename: optical flow file
:return: None
"""
flow = flow.detach().cpu().numpy().transpose(1,2,0)
img = flow_to_image(flow)
plt.figure()
plt.imshow(img)
#plt.show()
def visualize_flow(flow, mode='Y'):
"""
this function visualize the input flow
:param flow: input flow in array
:param mode: choose which color mode to visualize the flow (Y: Ccbcr, RGB: RGB color)
:return: None
"""
if mode == 'Y':
# Ccbcr color wheel
img = flow_to_image(flow)
plt.imshow(img)
plt.show()
elif mode == 'RGB':
(h, w) = flow.shape[0:2]
du = flow[:, :, 0]
dv = flow[:, :, 1]
valid = flow[:, :, 2]
max_flow = max(np.max(du), np.max(dv))
img = np.zeros((h, w, 3), dtype=np.float64)
# angle layer
img[:, :, 0] = np.arctan2(dv, du) / (2 * np.pi)
# magnitude layer, normalized to 1
img[:, :, 1] = np.sqrt(du * du + dv * dv) * 8 / max_flow
# phase layer
img[:, :, 2] = 8 - img[:, :, 1]
# clip to [0,1]
small_idx = img[:, :, 0:3] < 0
large_idx = img[:, :, 0:3] > 1
img[small_idx] = 0
img[large_idx] = 1
# convert to rgb
img = cl.hsv_to_rgb(img)
# remove invalid point
img[:, :, 0] = img[:, :, 0] * valid
img[:, :, 1] = img[:, :, 1] * valid
img[:, :, 2] = img[:, :, 2] * valid
# show
plt.imshow(img)
plt.show()
return None
def img_show_singleimage(image):
image=image.detach().cpu()
plt.figure()
img = image.numpy().transpose(1,2,0)
#print(img.shape)
if img.shape[2] == 1:
plt.imshow(img, cmap='gray')
elif img.shape[2] == 3:
plt.imshow(img)
#plt.show()
def img_show_singleimage_numpy(image):
plt.figure()
img = image
if img.shape[2] == 1:
plt.imshow(img)
elif img.shape[2] == 3:
plt.imshow(img)
#plt.show()