A state of the art real-time object detection system for C# (Visual Studio). This project has CPU and GPU support, with GPU the detection works much faster. The primary goal of this project is an easy use of yolo, this package is available on nuget and you must only install two packages to start detection. In the background we are use the Windows Yolo version of AlexeyAB/darknet. Send an image path or the byte array to yolo and receive the position of the detected objects. Our project is meant to return the object-type and -position as processable data. This library supports YoloV3 and YoloV2 Pre-Trained Datasets
Quick install Alturos.Yolo over NuGet
PM> install-package Alturos.Yolo (C# wrapper and C++ dlls 28MB)
PM> install-package Alturos.YoloV2TinyVocData (YOLOv2-tiny Pre-Trained Dataset 56MB)
var configurationDetector = new ConfigurationDetector();
var config = configurationDetector.Detect();
using (var yoloWrapper = new YoloWrapper(config))
{
var items = yoloWrapper.Detect(@"image.jpg");
//items[0].Type -> "Person, Car, ..."
//items[0].Confidence -> 0.0 (low) -> 1.0 (high)
//items[0].X -> bounding box
//items[0].Y -> bounding box
//items[0].Width -> bounding box
//items[0].Height -> bounding box
}
using (var yoloWrapper = new YoloWrapper("yolov2-tiny-voc.cfg", "yolov2-tiny-voc.weights", "voc.names"))
{
var items = yoloWrapper.Detect(@"image.jpg");
//items[0].Type -> "Person, Car, ..."
//items[0].Confidence -> 0.0 (low) -> 1.0 (high)
//items[0].X -> bounding box
//items[0].Y -> bounding box
//items[0].Width -> bounding box
//items[0].Height -> bounding box
}
It is important to use GPU mode for fast object detection. It is also important not to instantiate the wrapper over and over again. A further optimization is to transfer the images as byte stream instead of passing a file path. GPU detection is usually 10 times faster!
- .NET Framework 4.6.1
- Microsoft Visual C++ Redistributable for Visual Studio 2015, 2017 und 2019 x64
It is important to use the mentioned version 10.1
- Install the latest Nvidia driver for your graphic device
- Install Nvidia CUDA Toolkit 10.1 (must be installed add a hardware driver for cuda support)
- Download Nvidia cuDNN v7.6.3 for CUDA 10.1
- Copy the
cudnn64_7.dll
from the output directory of point 2. into thex64
folder of your project.
- Visual Studio 2017
Average processing speed of test images bird1.png, bird2.png, car1.png, motorbike1.png
Processor | YOLOv2-tiny | YOLOv3 | yolo9000 |
---|---|---|---|
Intel i7 3770 | 400 ms | 2380 ms | - |
Intel Xeon E5-1620 v3 | 207 ms | 4327 ms | - |
Intel Xeon E3-1240 v6 | 182 ms | 3213 ms | - |
Graphic card | Single precision | Memory | Slot | YOLOv2-tiny | YOLOv3 | yolo9000 |
---|---|---|---|---|---|---|
NVIDIA Quadro K420 | 300 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro K620 | 768 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro K1200 | 1151 GFLOPS | 4 GB | Single | - | - | - |
NVIDIA Quadro P400 | 599 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro P600 | 1117 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro P620 | 1386 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro P1000 | 1862 GFLOPS | 4 GB | Single | - | - | - |
NVIDIA Quadro P2000 | 3011 GFLOPS | 5 GB | Single | - | - | - |
NVIDIA Quadro P4000 | 5304 GFLOPS | 8 GB | Single | - | - | - |
NVIDIA Quadro P5000 | 8873 GFLOPS | 16 GB | Dual | - | - | - |
NVIDIA GeForce GT 710 | 366 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA GeForce GT 730 | 693 GFLOPS | 2-4 GB | Single | - | - | - |
NVIDIA GeForce GT 1030 | 1098 GFLOPS | 2 GB | Single | 40 ms | 160 ms | - |
NVIDIA GeForce GTX 1060 | 4372 GFLOPS | 6 GB | Dual | 25 ms | 100 ms | - |
A Pre-Trained Dataset contains the Informations about the recognizable objects. A higher Processing Resolution
detects object also if they are smaller but this increases the processing time. The Alturos.YoloV2TinyVocData
package is the same as YOLOv2-tiny
.
You can download the datasets manually or integrate them automatically into the code.
//The download takes some time depending on the internet connection.
var repository = new YoloPreTrainedDatasetRepository();
await repository.DownloadDatasetAsync("YOLOv3", ".");
Model | Processing Resolution | Cfg | Weights | Names |
---|---|---|---|---|
YOLOv3 | 608x608 | yolov3.cfg | yolov3.weights | coco.names |
YOLOv3-tiny | 416x416 | yolov3-tiny.cfg | yolov3-tiny.weights | coco.names |
YOLOv2 | 608x608 | yolov2.cfg | yolov2.weights | coco.names |
YOLOv2-tiny | 416x416 | yolov2-tiny.cfg | yolov2-tiny.weights | voc.names |
yolo9000 | 448x448 | yolo9000.cfg | yolo9000.weights | 9k.names |
yolo9000 require a data
directory with this two files coco9k.map and 9k.tree. Merge files with this command type xaa xab > yolo9000.weights
If you have some error like DllNotFoundException
use Dependencies to check all references are available for yolo_cpp_dll_gpu.dll
If you have some error like NotSupportedException
check if you use the latest Nvidia driver
Check graphic device usage "%PROGRAMFILES%\NVIDIA Corporation\NVSMI\nvidia-smi.exe"
You should have this files in your program directory.
.
├── Alturos.Yolo.dll # C# yolo wrapper
├── x64/
│ ├── yolo_cpp_dll_cpu.dll # yolo runtime for cpu
│ ├── yolo_cpp_dll_gpu.dll # yolo runtime for gpu
│ ├── cudnn64_7.dll # required by yolo_cpp_dll_gpu (optional only required for gpu processig)
│ ├── opencv_world340.dll # required by yolo_cpp_dll_xxx (process image as byte data detect_mat)
│ ├── pthreadGC2.dll # required by yolo_cpp_dll_xxx (POSIX Threads)
│ ├── pthreadVC2.dll # required by yolo_cpp_dll_xxx (POSIX Threads)
│ ├── msvcr100.dll # required by pthread (POSIX Threads)
To marking bounded boxes of objects in images for training neural network you can use