On the Market-1501 dataset, we accelerate the re-ranking processing from 89.2s to 9.4ms with one K40m GPU, facilitating the real-time post-processing. Similarly, we observe that our method achieves comparable or even better retrieval results on the other four image retrieval benchmarks, i.e., VeRi-776, Oxford-5k, Paris-6k and University-1652, with limited time cost.
- CUDA 9
- cuDNN >=7.3
- paddlepaddle-gpu == 1.6.3
To compile it:
cd lib
sh make.sh
The demo script main.py
provides the gnn re-ranking method using the prepared feature.
source set_env.sh
python main.py --data_path PATH_TO_DATA --k1 26 --k2 7
@article{zhang2020understanding,
title={Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective},
author={Xuanmeng Zhang, Minyue Jiang, Zhedong Zheng, Xiao Tan, Errui Ding, Yi Yang},
journal={arXiv preprint arXiv:2012.07620},
year={2020}
}