-
Notifications
You must be signed in to change notification settings - Fork 2
/
inference_core_yv.py
254 lines (197 loc) · 8.69 KB
/
inference_core_yv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
from model.eval_network import TSDTVOS
from model.aggregate import aggregate
from util.tensor_util import pad_divide_by
import math
import numpy as np
def tensor_to_numpy_SAT(t):
r"""
Perform naive detach / cpu / numpy process.
:param t: torch.Tensor, (N, C, H, W)
:return: numpy.array, (N, C, H, W)
"""
arr = t.detach().cpu().numpy()
return arr
class InferenceCore:
def __init__(self, prop_net:TSDTVOS, images, num_objects, top_k=20,
mem_every=5, req_frames=None, conf_thr=0.4):
self.prop_net = prop_net
self.mem_every = mem_every
self.conf_thr = conf_thr
# We HAVE to get the output for these frames
# None if all frames are required
self.req_frames = req_frames
self.top_k = top_k
# True dimensions
t = images.shape[1]
h, w = images.shape[-2:]
# Pad each side to multiple of 16
images, self.pad = pad_divide_by(images, 16)
# Padded dimensions
nh, nw = images.shape[-2:]
self.images = images
self.device = 'cuda'
self.k = num_objects
# Background included, not always consistent (i.e. sum up to 1)
self.prob = torch.zeros((self.k+1, t, 1, nh, nw), dtype=torch.float32, device=self.device)
self.prob[0] = 1e-7
self.t, self.h, self.w = t, h, w
self.nh, self.nw = nh, nw
self.kh = self.nh//16
self.kw = self.nw//16
# list of objects with usable memory
self.enabled_obj = []
self.mem_banks = dict()
self.scores = dict()
def encode_query(self, idx):
result = self.prop_net.encode_query(self.images[:,idx].cuda())
return result
def do_pass(self, key_k, key_v, idx, end_idx):
closest_ti = end_idx
K, CK, _, H, W = key_k.shape
_, CV, _, _, _ = key_v.shape
for i, oi in enumerate(self.enabled_obj):
if oi not in self.mem_banks:
self.mem_banks[oi] = MemoryBank(k=1, top_k=self.top_k, conf_thr = self.conf_thr)
self.scores[oi] = [1]
self.mem_banks[oi].add_memory(key_k, key_v[i:i+1])
if self.mem_banks[oi].get_num()!= len(self.scores[oi]):
pred_mask = tensor_to_numpy_SAT(self.prob[oi,idx]).transpose((1, 2, 0)) #np (257,257,1)
pred_mask_b = (pred_mask > 0.4).astype(np.uint8) #这里
conf_score_temp = 0
if pred_mask_b.sum() > 0:
conf_score_temp = (pred_mask * pred_mask_b).sum() / pred_mask_b.sum()
else:
conf_score_temp = 0
self.scores[oi].append(conf_score_temp)
last_ti = idx
# Note that we never reach closest_ti, just the frame before it
this_range = range(idx+1, closest_ti)
step = +1
end = closest_ti - 1
for ti in this_range:
is_mem_frame = (abs(ti-last_ti) >= self.mem_every)
# Why even work on it if it is not required for memory/output
if (not is_mem_frame) and (self.req_frames is not None) and (ti not in self.req_frames):
continue
k16, qv16, qf16, qf8, qf4 = self.encode_query(ti)
# After this step all keys will have the same size
out_mask = torch.cat([
self.prop_net.segment_with_query(self.mem_banks[oi], qf8, qf4, k16, qv16, self.scores[oi])
for oi in self.enabled_obj], 0)
out_mask = aggregate(out_mask, keep_bg=True)
self.prob[0,ti] = out_mask[0]
for i, oi in enumerate(self.enabled_obj):
self.prob[oi,ti] = out_mask[i+1]
# a = self.mem_banks[oi].get_num()
if ti != end:
if is_mem_frame:
prev_value = self.prop_net.encode_memory(self.images[:,ti].cuda(), qf16, out_mask[1:])
prev_key = k16.unsqueeze(2)
for i, oi in enumerate(self.enabled_obj):
self.mem_banks[oi].add_memory(prev_key, prev_value[i:i+1])
pred_mask = tensor_to_numpy_SAT(out_mask[i+1]).transpose((1, 2, 0)) #np (257,257,1)
pred_mask_b = (pred_mask > 0.4).astype(np.uint8) #这里
conf_score_temp = 0
if pred_mask_b.sum() > 0:
conf_score_temp = (pred_mask * pred_mask_b).sum() / pred_mask_b.sum()
else:
conf_score_temp = 0
self.scores[oi].append(conf_score_temp)
if is_mem_frame:
last_ti = ti
return closest_ti
def interact(self, mask, frame_idx, end_idx, obj_idx):
# In youtube mode, we interact with a subset of object id at a time
mask, _ = pad_divide_by(mask.cuda(), 16)
# update objects that have been labeled
self.enabled_obj.extend(obj_idx)
# Set other prob of mask regions to zero
mask_regions = (mask[1:].sum(0) > 0.5)
self.prob[:, frame_idx, mask_regions] = 0
self.prob[obj_idx, frame_idx] = mask[obj_idx]
self.prob[:, frame_idx] = aggregate(self.prob[1:, frame_idx], keep_bg=True)
# KV pair for the interacting frame
key_k, _, qf16, _, _ = self.encode_query(frame_idx)
key_v = self.prop_net.encode_memory(self.images[:,frame_idx].cuda(), qf16, self.prob[self.enabled_obj,frame_idx].cuda())
key_k = key_k.unsqueeze(2)
# Propagate
self.do_pass(key_k, key_v, frame_idx, end_idx)
def softmax_w_top(x, top):
# x = x.unsqueeze(0)
values, indices = torch.topk(x, k=top, dim=1)
x_exp = values.exp_()
x_exp /= torch.sum(x_exp, dim=1, keepdim=True)
x.zero_().scatter_(1, indices, x_exp) # B * THW * HW
# x = x.squeeze(0)
return x
class MemoryBank:
def __init__(self, k, top_k=20, conf_thr=0.6):
self.top_k = top_k
self.CK = None
self.CV = None
self.mem_k = None
self.mem_v = None
self.num_objects = k
self.conf_thr=conf_thr
def _global_matching(self, mk, qk, conf_score):
# NE means number of elements -- typically T*H*W
B, CK, NE = mk.shape
a = mk.pow(2).sum(1).unsqueeze(2)
b = 2 * (mk.transpose(1, 2) @ qk)
affinity = (-a+b) / math.sqrt(CK) # B, NE, HW
T = affinity.shape[-2]//affinity.shape[-1]
HW = affinity.shape[-1]
for i in range(T):
# a = affinity[j,i*HW:(i+1)*HW+1]
if conf_score[i] < self.conf_thr:
affinity[:,i*HW:(i+1)*HW] = affinity[:,i*HW:(i+1)*HW]*conf_score[i]
# if conf_score != -1:
# T = affinity.shape[-2]//affinity.shape[-1]
# HW = affinity.shape[-1]
# BScore = len(conf_score[0])
# affinity = affinity.expand(BScore,-1,-1)
# for i in range(T):
# for j in range(BScore):
# # a = affinity[j,i*HW:(i+1)*HW+1]
# if conf_score[i][j] < 0.8:
# affinity[j,i*HW:(i+1)*HW+1] = affinity[j,i*HW:(i+1)*HW+1]*conf_score[i][j]
affinity = softmax_w_top(affinity, top=self.top_k) # B, THW, HW
return affinity
def _readout(self, affinity, mv):
return torch.bmm(mv, affinity)
def match_memory(self, qk, conf_score):
k = self.num_objects
_, _, h, w = qk.shape
qk = qk.flatten(start_dim=2)
mk = self.mem_k
mv = self.mem_v
affinity = self._global_matching(mk, qk, conf_score)
readout_mem = self._readout(affinity.expand(k,-1,-1), mv)
return readout_mem.view(k, self.CV, h, w)
def get_num(self):
return self.num
def add_memory(self, key, value):
key = key.flatten(start_dim=2)
value = value.flatten(start_dim=2)
if self.mem_k is None:
# First frame, just shove it in
self.mem_k = key
self.mem_v = value
self.CK = key.shape[1]
self.CV = value.shape[1]
self.len = key.shape[2]
self.num = 1
else:
# maxlen = 2
# if self.mem_k.shape[2] >= self.len*maxlen:
# self.mem_k = torch.cat([self.mem_k[:,:,:self.len], key], 2)
# self.mem_v = torch.cat([self.mem_v[:,:,:self.len], value], 2)
# else:
# self.mem_k = torch.cat([self.mem_k, key], 2)
# self.mem_v = torch.cat([self.mem_v, value], 2)
self.mem_k = torch.cat([self.mem_k, key], 2)
self.mem_v = torch.cat([self.mem_v, value], 2)
self.num += 1
# self.mem_k = key
# self.mem_v = value