-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval_youtube.py
168 lines (139 loc) · 6.17 KB
/
eval_youtube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
YouTubeVOS has a label structure that is more complicated than DAVIS
Labels might not appear on the first frame (there might be no labels at all in the first frame)
Labels might not even appear on the same frame (i.e. Object 0 at frame 10, and object 1 at frame 15)
0 does not mean background -- it is simply "no-label"
and object indices might not be in order, there are missing indices somewhere in the validation set
Dealing with these makes the logic a bit convoluted here
It is not necessarily hacky but do understand that it is not as straightforward as DAVIS
Validation/test set.
"""
import os
from os import path
from argparse import ArgumentParser
import json
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
from PIL import Image
from model.eval_network import TSDTVOS
from dataset.yv_test_dataset import YouTubeVOSTestDataset
from util.tensor_util import unpad
from inference_core_yv import InferenceCore
from progressbar import progressbar
"""
Arguments loading
"""
parser = ArgumentParser()
parser.add_argument('--model', default='./saves/best.pth')
parser.add_argument('--yv_path', default='/root/projects/data/YouTube-VOS/2019')
parser.add_argument('--output')
parser.add_argument('--split', help='valid/test', default='valid')
parser.add_argument('--top', type=int, default=20)
parser.add_argument('--amp', action='store_true')
parser.add_argument('--mem_every', default=5, type=int)
parser.add_argument('--output_all', help=
"""
We will output all the frames if this is set to true.
Otherwise only a subset will be outputted, as determined by meta.json to save disk space.
For ensemble, all the sources must have this setting unified.
""", action='store_true')
parser.add_argument('--conf_thr', default=0.4, type=float)
args = parser.parse_args()
yv_path = args.yv_path
out_path = args.output
# Simple setup
os.makedirs(out_path, exist_ok=True)
palette = Image.open(path.expanduser(yv_path + '/valid/Annotations/0a49f5265b/00000.png')).getpalette()
torch.autograd.set_grad_enabled(False)
# Load the json if we have to
if not args.output_all:
with open(path.join(yv_path, args.split, 'meta.json')) as f:
meta = json.load(f)['videos']
# Setup Dataset
test_dataset = YouTubeVOSTestDataset(data_root=yv_path, split=args.split)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4)
# Load our checkpoint
prop_saved = torch.load(args.model)
top_k = args.top
prop_model = TSDTVOS().cuda().eval()
prop_model.load_state_dict(prop_saved)
# Start eval
video_num = -1
for data in progressbar(test_loader, max_value=len(test_loader), redirect_stdout=True):
with torch.cuda.amp.autocast(enabled=args.amp):
rgb = data['rgb']
msk = data['gt'][0]
info = data['info']
name = info['name'][0]
num_objects = len(info['labels'][0])
gt_obj = info['gt_obj']
size = info['size']
# video_num += 1
# if video_num == 31:
# print(31)
# if video_num == 32:
# print(32)
req_frames = None
if not args.output_all:
req_frames = []
objects = meta[name]['objects']
for key, value in objects.items():
req_frames.extend(value['frames'])
# Map the frame names to indices
req_frames_names = set(req_frames)
req_frames = []
for fi in range(rgb.shape[1]):
frame_name = info['frames'][fi][0][:-4]
if frame_name in req_frames_names:
req_frames.append(fi)
req_frames = sorted(req_frames)
# Frames with labels, but they are not exhaustively labeled
frames_with_gt = sorted(list(gt_obj.keys()))
processor = InferenceCore(prop_model, rgb, num_objects=num_objects, top_k=top_k,
mem_every=args.mem_every,
req_frames=req_frames, conf_thr=args.conf_thr)
# min_idx tells us the starting point of propagation
# Propagating before there are labels is not useful
min_idx = 99999
for i, frame_idx in enumerate(frames_with_gt):
min_idx = min(frame_idx, min_idx)
# Note that there might be more than one label per frame
obj_idx = gt_obj[frame_idx][0].tolist()
# Map the possibly non-continuous labels into a continuous scheme
obj_idx = [info['label_convert'][o].item() for o in obj_idx]
# Append the background label
with_bg_msk = torch.cat([
1 - torch.sum(msk[:,frame_idx], dim=0, keepdim=True),
msk[:,frame_idx],
], 0).cuda()
# We perform propagation from the current frame to the next frame with label
if i == len(frames_with_gt) - 1:
processor.interact(with_bg_msk, frame_idx, rgb.shape[1], obj_idx)
else:
processor.interact(with_bg_msk, frame_idx, frames_with_gt[i+1]+1, obj_idx)
# Do unpad -> upsample to original size (we made it 480p)
out_masks = torch.zeros((processor.t, 1, *size), dtype=torch.uint8, device='cuda')
for ti in range(processor.t):
prob = unpad(processor.prob[:,ti], processor.pad)
prob = F.interpolate(prob, size, mode='bilinear', align_corners=False)
out_masks[ti] = torch.argmax(prob, dim=0)
out_masks = (out_masks.detach().cpu().numpy()[:,0]).astype(np.uint8)
# Remap the indices to the original domain
idx_masks = np.zeros_like(out_masks)
for i in range(1, num_objects+1):
backward_idx = info['label_backward'][i].item()
idx_masks[out_masks==i] = backward_idx
# Save the results
this_out_path = path.join(out_path, 'Annotations', name)
os.makedirs(this_out_path, exist_ok=True)
for f in range(idx_masks.shape[0]):
if f >= min_idx:
if args.output_all or (f in req_frames):
img_E = Image.fromarray(idx_masks[f])
img_E.putpalette(palette)
img_E.save(os.path.join(this_out_path, info['frames'][f][0].replace('.jpg','.png')))
del rgb
del msk
del processor