-
Notifications
You must be signed in to change notification settings - Fork 4
/
streamnet_s.py
335 lines (284 loc) · 14.4 KB
/
streamnet_s.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# encoding: utf-8
import os
import sys
import torch
import torch.nn as nn
import torch.distributed as dist
from yolox.exp import Exp as MyExp
class Exp(MyExp):
def __init__(self):
super(Exp, self).__init__()
self.depth_t = 1
self.width_t = 1
self.depth = 0.33
self.width = 0.50
self.data_num_workers = 6
self.num_classes = 8
self.input_size = (600, 960) # (h,w)
self.random_size = (50, 70)
self.test_size = (600, 960)
#
self.basic_lr_per_img = 0.001 / 64.0
self.warmup_epochs = 1
self.max_epoch = 8
self.no_aug_epochs = 8
self.eval_interval = 1
self.train_ann = 'train.json'
self.val_ann = 'val.json'
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
self.output_dir = './data/output/stream_yolo/longshort_new_archi_oddil/l3-s1_logits'
self.short_cfg = dict(
frame_num=1,
delta=1,
with_short_cut=False,
out_channels=[((64, 128, 256), 1), ],
)
self.long_cfg = dict(
frame_num=3,
delta=1,
with_short_cut=False,
include_current_frame=False,
out_channels=[((21, 42, 85), 3), ],
)
self.yolox_cfg = dict(
merge_form="long_fusion",
with_short_cut=True,
)
self.neck_cfg = {
'depth': 1.0,
'hidden_ratio': 0.75,
'in_channels': [128, 256, 512],
'out_channels': [128, 256, 512],
'act': 'silu',
'spp': False,
'block_name': 'BasicBlock_3x3_Reverse',
'dcn': True,
}
def get_model(self):
from exps.model.dfp_pafpn import DFPPAFPN
from exps.model.yolox_longshort_v3_oddil import YOLOXLONGSHORTV3ODDIL
from exps.model.dfp_pafpn_long_v3 import DFPPAFPNLONGV3
from exps.model.dfp_pafpn_short_v3 import DFPPAFPNSHORTV3
from exps.model.longshort_backbone_neck_v2 import BACKBONENECKV2
from exps.model.tal_head import TALHead
from exps.model.tal_head_dil import TALHeadDil
from exps.model.tal_head_oddil import TALHeadODDil
import torch.nn as nn
def init_yolo(M):
for m in M.modules():
if isinstance(m, nn.BatchNorm2d):
m.eps = 1e-3
m.momentum = 0.03
if getattr(self, "model", None) is None:
in_channels = [256, 512, 1024]
long_backbone_s = (DFPPAFPNLONGV3(self.depth,
self.width,
in_channels=in_channels,
frame_num=self.long_cfg["frame_num"],
with_short_cut=self.long_cfg["with_short_cut"],
out_channels=self.long_cfg["out_channels"])
if self.long_cfg["frame_num"] != 0 else None)
short_backbone_s = DFPPAFPNSHORTV3(self.depth,
self.width,
in_channels=in_channels,
frame_num=self.short_cfg["frame_num"],
with_short_cut=self.short_cfg["with_short_cut"],
out_channels=self.short_cfg["out_channels"])
backbone_neck_s = BACKBONENECKV2(self.depth,
self.width,
in_channels=in_channels,
neck_cfg=self.neck_cfg)
# head_s = TALHead(self.num_classes, self.width, in_channels=in_channels, gamma=1.0,
# ignore_thr=0.5, ignore_value=1.5)
one_factor = 0.2
head_s = TALHeadODDil(
self.num_classes, self.width, in_channels=in_channels, gamma=1.0,
ignore_thr=0.5, ignore_value=1.5,
hint_cls_factor=one_factor, hint_obj_factor=one_factor, hint_iou_factor=one_factor,
hint_cls_dil_enable=True, hint_obj_dil_enable=True, hint_iou_dil_enable=True,
)
# teacher model
backbone_t = DFPPAFPN(self.depth_t, self.width_t, in_channels=in_channels)
# head_t = PIPEHeadDil(self.num_classes, self.width_t, in_channels=in_channels)
head_t = TALHeadDil(self.num_classes, self.width_t, in_channels=in_channels, gamma=1.0,
ignore_thr=0.5, ignore_value=1.5, eval_decode=False)
self.model = YOLOXLONGSHORTV3ODDIL(long_backbone_s,
short_backbone_s,
backbone_neck_s,
head_s,
backbone_t=backbone_t,
head_t=head_t,
merge_form=self.yolox_cfg["merge_form"],
in_channels=in_channels,
width=self.width,
with_short_cut=self.yolox_cfg["with_short_cut"],
long_cfg=self.long_cfg)
# self.model = YOLOXODDIL(backbone_s, head_s, backbone_t, head_t,
# coef_cfg=self.coef_cfg, dil_neck_weight=0.5, still_teacher=False)
self.model.apply(init_yolo)
self.model.head.initialize_biases(1e-2)
return self.model
def get_data_loader(self, batch_size, is_distributed, no_aug=False, local_rank=0, cache_img=False):
# from exps.dataset.longshort.tal_flip_long_short_argoversedataset import LONGSHORT_ARGOVERSEDataset
from exps.dataset.distillation.longshort.tal_flip_long_short_argoversedataset_dil import LONGSHORT_Dil_ARGOVERSEDataset
from exps.data.tal_flip_mosaicdetection import LongShortMosaicDetectionDil
from exps.data.data_augment_flip import LongShortTrainTransformDil
from yolox.data import (
YoloBatchSampler,
DataLoader,
InfiniteSampler,
worker_init_reset_seed,
)
dataset = LONGSHORT_Dil_ARGOVERSEDataset(
data_dir='./data',
json_file=self.train_ann,
name='train',
img_size=self.input_size,
preproc=LongShortTrainTransformDil(max_labels=50,
hsv=False,
flip=True,
short_frame_num=self.short_cfg["frame_num"],
long_frame_num=self.long_cfg["frame_num"]),
cache=cache_img,
short_cfg=self.short_cfg,
long_cfg=self.long_cfg,
)
dataset = LongShortMosaicDetectionDil(dataset,
mosaic=not no_aug,
img_size=self.input_size,
preproc=LongShortTrainTransformDil(max_labels=120,
hsv=False,
flip=True,
short_frame_num=self.short_cfg["frame_num"],
long_frame_num=self.long_cfg["frame_num"]),
degrees=self.degrees,
translate=self.translate,
scale=self.mosaic_scale,
shear=self.shear,
perspective=0.0,
enable_mixup=self.enable_mixup,
mosaic_prob=self.mosaic_prob,
mixup_prob=self.mixup_prob,
)
self.dataset = dataset
if is_distributed:
batch_size = batch_size // dist.get_world_size()
sampler = InfiniteSampler(len(self.dataset), seed=self.seed if self.seed else 0)
batch_sampler = YoloBatchSampler(
sampler=sampler,
batch_size=batch_size,
drop_last=False,
mosaic=not no_aug)
dataloader_kwargs = {"num_workers": self.data_num_workers, "pin_memory": True}
dataloader_kwargs["batch_sampler"] = batch_sampler
# Make sure each process has different random seed, especially for 'fork' method
dataloader_kwargs["worker_init_fn"] = worker_init_reset_seed
train_loader = DataLoader(self.dataset, **dataloader_kwargs)
return train_loader
def get_eval_loader(self, batch_size, is_distributed, testdev=False):
# from exps.dataset.tal_flip_one_future_argoversedataset import ONE_ARGOVERSEDataset
# from exps.data.data_augment_flip import DoubleValTransform
from exps.dataset.longshort.tal_flip_long_short_argoversedataset import LONGSHORT_ARGOVERSEDataset
from exps.data.data_augment_flip import LongShortValTransform
valdataset = LONGSHORT_ARGOVERSEDataset(
data_dir='./data',
json_file='val.json',
name='val',
img_size=self.test_size,
preproc=LongShortValTransform(short_frame_num=self.short_cfg["frame_num"],
long_frame_num=self.long_cfg["frame_num"]),
short_cfg=self.short_cfg,
long_cfg=self.long_cfg,
)
if is_distributed:
batch_size = batch_size // dist.get_world_size()
sampler = torch.utils.data.distributed.DistributedSampler(valdataset, shuffle=False)
else:
sampler = torch.utils.data.SequentialSampler(valdataset)
dataloader_kwargs = {"num_workers": self.data_num_workers, "pin_memory": True, "sampler": sampler}
dataloader_kwargs["batch_size"] = batch_size
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)
return val_loader
def random_resize(self, data_loader, epoch, rank, is_distributed):
import random
tensor = torch.LongTensor(2).cuda()
if rank == 0:
if epoch >= self.max_epoch - 1:
size = self.input_size
else:
size_factor = self.input_size[0] * 1.0 / self.input_size[1]
size = random.randint(*self.random_size)
size = (16 * int(size * size_factor), int(16 * size))
tensor[0] = size[0]
tensor[1] = size[1]
if is_distributed:
dist.barrier()
dist.broadcast(tensor, 0)
input_size = (tensor[0].item(), tensor[1].item())
return input_size
def preprocess(self, inputs, targets, tsize):
scale_y = tsize[0] / self.input_size[0]
scale_x = tsize[1] / self.input_size[1]
if scale_x != 1 or scale_y != 1:
inputs[0] = nn.functional.interpolate(
inputs[0], size=tsize, mode="bilinear", align_corners=False
)
inputs[1] = nn.functional.interpolate(
inputs[1], size=tsize, mode="bilinear", align_corners=False
) if inputs[1].ndim == 4 else inputs[1] # inputs[1].ndim != 4 为不使用long支路的情况
targets[0][..., 1::2] = targets[0][..., 1::2] * scale_x
targets[0][..., 2::2] = targets[0][..., 2::2] * scale_y
targets[1][..., 1::2] = targets[1][..., 1::2] * scale_x
targets[1][..., 2::2] = targets[1][..., 2::2] * scale_y
return inputs, targets
def get_evaluator(self, batch_size, is_distributed, testdev=False):
# from exps.evaluators.onex_stream_evaluator import ONEX_COCOEvaluator
from exps.evaluators.longshort_onex_stream_evaluator import LONGSHORT_ONEX_COCOEvaluator
val_loader = self.get_eval_loader(batch_size, is_distributed, testdev)
evaluator = LONGSHORT_ONEX_COCOEvaluator(
dataloader=val_loader,
img_size=self.test_size,
confthre=self.test_conf,
nmsthre=self.nmsthre,
num_classes=self.num_classes,
testdev=testdev,
)
return evaluator
def get_trainer(self, args):
from exps.train_utils.longshort_dil_trainer import Trainer
trainer = Trainer(self, args)
# NOTE: trainer shouldn't be an attribute of exp object
return trainer
def eval(self, model, evaluator, is_distributed, half=False):
return evaluator.evaluate(model, is_distributed, half)
def get_optimizer(self, batch_size, ignore_keys=None):
if "optimizer" not in self.__dict__:
ignore_keys = ignore_keys if ignore_keys is not None else []
if self.warmup_epochs > 0:
lr = self.warmup_lr
else:
lr = self.basic_lr_per_img * batch_size
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in self.model.named_modules():
ig_flag = False
for ig_k in ignore_keys:
if ig_k in k:
ig_flag = True
break
if ig_flag:
continue
if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d) or "bn" in k:
pg0.append(v.weight) # no decay
elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
optimizer = torch.optim.SGD(
pg0, lr=lr, momentum=self.momentum, nesterov=True
)
optimizer.add_param_group(
{"params": pg1, "weight_decay": self.weight_decay}
) # add pg1 with weight_decay
optimizer.add_param_group({"params": pg2})
self.optimizer = optimizer
return self.optimizer