// Go 语言中暴露的 semaphore 实现
// 具体的用法是提供 sleep 和 wakeup 原语
// 以使其能够在其它同步原语中的竞争情况下使用
// 因此这里的 semaphore 和 Linux 中的 futex 目标是一致的
// 只不过语义上更简单一些
//
// 也就是说,不要认为这些是信号量
// 把这里的东西看作 sleep 和 wakeup 实现的一种方式
// 每一个 sleep 都会和一个 wakeup 配对
// 即使在发生 race 时,wakeup 在 sleep 之前时也是如此
//
// See Mullender and Cox, ``Semaphores in Plan 9,''
// http://swtch.com/semaphore.pdf
// 为 sync.Mutex 准备的异步信号量
// semaRoot 持有一棵 地址各不相同的 sudog(s.elem) 的平衡树
// 每一个 sudog 都反过来指向(通过 s.waitlink)一个在同一个地址上等待的其它 sudog 们
// 同一地址的 sudog 的内部列表上的操作时间复杂度都是 O(1)。顶层 semaRoot 列表的扫描
// 的时间复杂度是 O(log n),n 是被哈希到同一个 semaRoot 的不同地址的总数,每一个地址上都会有一些 goroutine 被阻塞。
// 访问 golang.org/issue/17953 来查看一个在引入二级列表之前性能较差的程序样例,test/locklinear.go
// 中有一个复现这个样例的测试
type semaRoot struct {
lock mutex
treap *sudog // root of balanced tree of unique waiters.
nwait uint32 // Number of waiters. Read w/o the lock.
}
// Prime to not correlate with any user patterns.
const semTabSize = 251
var semtable [semTabSize]struct {
root semaRoot
pad [sys.CacheLineSize - unsafe.Sizeof(semaRoot{})]byte
}
func semroot(addr *uint32) *semaRoot {
return &semtable[(uintptr(unsafe.Pointer(addr))>>3)%semTabSize].root
}
┌─────┬─────┬─────┬─────┬─────┬────────────────────────┬─────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ ..... │ 250 │
└─────┴─────┴─────┴─────┴─────┴────────────────────────┴─────┘
│ │
│ │
└──┐ └─┐
│ │
│ │
▼ ▼
┌─────────┐ ┌─────────┐
│ struct │ │ struct │
├─────────┴─────────┐ ├─────────┴─────────┐
│ root semaRoot │──┐ │ root semaRoot │──┐
├───────────────────┤ │ ├───────────────────┤ │
│ pad │ │ │ pad │ │
└───────────────────┘ │ └───────────────────┘ │
│ │
┌────────────────┘ ┌────────────────┘
│ │
│ │
▼ ▼
┌──────────┐ ┌──────────┐
│ semaRoot │ │ semaRoot │
├──────────┴────────┐ ├──────────┴────────┐
│ lock mutex │ │ lock mutex │
├───────────────────┤ ├───────────────────┤
│ treap *sudog │ │ treap *sudog │
├───────────────────┤ ├───────────────────┤
│ nwait uint32 │ │ nwait uint32 │
└───────────────────┘ └───────────────────┘
treap 结构:
┌──────────┐
┌─┬─▶│ sudog │
│ │ ├──────────┴────────────┐
┌─────────────────────┼─┼──│ prev *sudog │
│ │ │ ├───────────────────────┤
│ │ │ │ next *sudog │────┐
│ │ │ ├───────────────────────┤ │
│ │ │ │ parent *sudog │ │
│ │ │ ├───────────────────────┤ │
│ │ │ │ elem unsafe.Pointer │ │
│ │ │ ├───────────────────────┤ │
│ │ │ │ ticket uint32 │ │
│ │ │ └───────────────────────┘ │
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
▼ │ │ ▼
┌──────────┐ │ │ ┌──────────┐
│ sudog │ │ │ │ sudog │
├──────────┴────────────┐ │ │ ├──────────┴────────────┐
│ prev *sudog │ │ │ │ prev *sudog │
├───────────────────────┤ │ │ ├───────────────────────┤
│ next *sudog │ │ │ │ next *sudog │
├───────────────────────┤ │ │ ├───────────────────────┤
│ parent *sudog │───┘ └─────────────────────────│ parent *sudog │
├───────────────────────┤ ├───────────────────────┤
│ elem unsafe.Pointer │ │ elem unsafe.Pointer │
├───────────────────────┤ ├───────────────────────┤
│ ticket uint32 │ │ ticket uint32 │
└───────────────────────┘ └───────────────────────┘
在这个 treap 结构里,从 elem 的视角(其实就是 lock 的 addr)来看,这个结构是个二叉搜索树。从 ticket 的角度来看,整个结构就是一个小顶堆。
所以才叫树堆(treap)。
相同 addr,即对同一个 mutex 上锁的 g,会阻塞在同一个地址上。这些阻塞在同一个地址上的 goroutine 会被打包成 sudog,组成一个链表。用 sudog 的 waitlink 相连:
┌──────────┐ ┌──────────┐ ┌──────────┐
│ sudog │ ┌─────▶│ sudog │ ┌─────▶│ sudog │
├──────────┴────────────┐ │ ├──────────┴────────────┐ │ ├──────────┴────────────┐
│ waitlink *sudog │─────┘ │ waitlink *sudog │──────┘ │ waitlink *sudog │
├───────────────────────┤ ├───────────────────────┤ ├───────────────────────┤
│ waittail *sudog │ │ waittail *sudog │ │ waittail *sudog │
└───────────────────────┘ └───────────────────────┘ └───────────────────────┘
中间的元素的 waittail 都会指向最后一个元素:
┌──────────┐
│ sudog │
├──────────┴────────────┐
│ waitlink *sudog │
├───────────────────────┤
│ waittail *sudog │───────────────────────────────────────────────────────────┐
└───────────────────────┘ │
┌──────────┐ │
│ sudog │ │
├──────────┴────────────┐ │
│ waitlink *sudog │ │
├───────────────────────┤ │
│ waittail *sudog │─────────────────────────┤
└───────────────────────┘ ▼
┌──────────┐
│ sudog │
├──────────┴────────────┐
│ waitlink *sudog │
├───────────────────────┤
│ waittail *sudog │
└───────────────────────┘
在 sema.go 里实现的内容,用 go:linkname
导出给 sync、poll 库来使用,也是在链接期做了些手脚:
//go:linkname sync_runtime_Semacquire sync.runtime_Semacquire
func sync_runtime_Semacquire(addr *uint32) {
semacquire1(addr, false, semaBlockProfile)
}
//go:linkname poll_runtime_Semacquire internal/poll.runtime_Semacquire
func poll_runtime_Semacquire(addr *uint32) {
semacquire1(addr, false, semaBlockProfile)
}
//go:linkname sync_runtime_Semrelease sync.runtime_Semrelease
func sync_runtime_Semrelease(addr *uint32, handoff bool) {
semrelease1(addr, handoff)
}
//go:linkname sync_runtime_SemacquireMutex sync.runtime_SemacquireMutex
func sync_runtime_SemacquireMutex(addr *uint32, lifo bool) {
semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile)
}
//go:linkname poll_runtime_Semrelease internal/poll.runtime_Semrelease
func poll_runtime_Semrelease(addr *uint32) {
semrelease(addr)
}
sem 本身支持 acquire 和 release,其实就是 OS 里常说的 P 操作和 V 操作。
func cansemacquire(addr *uint32) bool {
for {
v := atomic.Load(addr)
if v == 0 {
return false
}
if atomic.Cas(addr, v, v-1) {
return true
}
}
}
type semaProfileFlags int
const (
semaBlockProfile semaProfileFlags = 1 << iota
semaMutexProfile
)
// Called from runtime.
func semacquire(addr *uint32) {
semacquire1(addr, false, 0)
}
func semacquire1(addr *uint32, lifo bool, profile semaProfileFlags) {
gp := getg()
if gp != gp.m.curg {
throw("semacquire not on the G stack")
}
// 低成本的情况
if cansemacquire(addr) {
return
}
// 高成本的情况:
// 增加 waiter count 的值
// 再尝试调用一次 cansemacquire,成本了就直接返回
// 没成功就把自己作为一个 waiter 入队
// sleep
// (之后 waiter 的 descriptor 被 signaler 用 dequeue 踢出)
s := acquireSudog()
root := semroot(addr)
t0 := int64(0)
s.releasetime = 0
s.acquiretime = 0
s.ticket = 0
for {
lock(&root.lock)
// 给 nwait 加一,这样后来的就不会在 semrelease 中进低成本的路径了
atomic.Xadd(&root.nwait, 1)
// 检查 cansemacquire 避免错过了唤醒
if cansemacquire(addr) {
atomic.Xadd(&root.nwait, -1)
unlock(&root.lock)
break
}
// 在 cansemacquire 之后的 semrelease 都可以知道我们正在等待
// (上面设置了 nwait),所以会直接进入 sleep
// 注: 这里说的 sleep 其实就是 goparkunlock
root.queue(addr, s, lifo)
goparkunlock(&root.lock, "semacquire", traceEvGoBlockSync, 4)
if s.ticket != 0 || cansemacquire(addr) {
break
}
}
if s.releasetime > 0 {
blockevent(s.releasetime-t0, 3)
}
releaseSudog(s)
}
func semrelease(addr *uint32) {
semrelease1(addr, false)
}
func semrelease1(addr *uint32, handoff bool) {
root := semroot(addr)
atomic.Xadd(addr, 1)
// 低成本情况: 没有 waiter?
// 这个 atomic 的检查必须发生在 xadd 之前,以避免错误唤醒
// (具体参见 semacquire 中的循环)
if atomic.Load(&root.nwait) == 0 {
return
}
// 高成本情况: 搜索 waiter 并唤醒它
lock(&root.lock)
if atomic.Load(&root.nwait) == 0 {
// count 值已经被另一个 goroutine 消费了
// 所以我们不需要唤醒其它 goroutine 了
unlock(&root.lock)
return
}
s, t0 := root.dequeue(addr)
if s != nil {
atomic.Xadd(&root.nwait, -1)
}
unlock(&root.lock)
if s != nil { // 可能会很慢,所以先解锁
acquiretime := s.acquiretime
if acquiretime != 0 {
mutexevent(t0-acquiretime, 3)
}
if s.ticket != 0 {
throw("corrupted semaphore ticket")
}
if handoff && cansemacquire(addr) {
s.ticket = 1
}
readyWithTime(s, 5)
}
}
func readyWithTime(s *sudog, traceskip int) {
if s.releasetime != 0 {
s.releasetime = cputicks()
}
goready(s.g, traceskip)
}
sudog 按照地址 hash 到 251 个 bucket 中的其中一个,每一个 bucket 都是一棵 treap。而相同 addr 上的 sudog 会形成一个链表。
为啥同一个地址的 sudog 不需要展开放在 treap 中呢?显然,sudog 唤醒的时候,block 在同一个 addr 上的 goroutine,说明都是加的同一把锁,这些 goroutine 被唤醒肯定是一起被唤醒的,相同地址的 g 并不需要查找才能找到,只要决定是先进队列的被唤醒(fifo)还是后进队列的被唤醒(lifo)就可以了。
// queue 函数会把 s 添加到 semaRoot 上阻塞的 goroutine 们中
// 实际上就是把 s 添加到其地址对应的 treap 上
func (root *semaRoot) queue(addr *uint32, s *sudog, lifo bool) {
s.g = getg()
s.elem = unsafe.Pointer(addr)
s.next = nil
s.prev = nil
var last *sudog
pt := &root.treap
for t := *pt; t != nil; t = *pt {
if t.elem == unsafe.Pointer(addr) {
// Already have addr in list.
if lifo {
// treap 中在 t 的位置用 s 覆盖掉 t
*pt = s
s.ticket = t.ticket
s.acquiretime = t.acquiretime
s.parent = t.parent
s.prev = t.prev
s.next = t.next
if s.prev != nil {
s.prev.parent = s
}
if s.next != nil {
s.next.parent = s
}
// 把 t 放在 s 的 wait list 的第一个位置
s.waitlink = t
s.waittail = t.waittail
if s.waittail == nil {
s.waittail = t
}
t.parent = nil
t.prev = nil
t.next = nil
t.waittail = nil
} else {
// 把 s 添加到 t 的等待列表的末尾
if t.waittail == nil {
t.waitlink = s
} else {
t.waittail.waitlink = s
}
t.waittail = s
s.waitlink = nil
}
return
}
last = t
if uintptr(unsafe.Pointer(addr)) < uintptr(t.elem) {
pt = &t.prev
} else {
pt = &t.next
}
}
// 把 s 作为树的新的叶子插入进去
// 平衡树使用 ticket 作为堆的权重值,这个 ticket 是随机生成的
// 也就是说,这个结构以元素地址来看的话,是一个二叉搜索树
// 同时用 ticket 值使其同时又是一个小顶堆,满足
// s.ticket <= both s.prev.ticket and s.next.ticket.
// https://en.wikipedia.org/wiki/Treap
// http://faculty.washington.edu/aragon/pubs/rst89.pdf
//
// s.ticket 会在一些地方和 0 相比,因此只设置最低位的 bit
// 这样不会明显地影响 treap 的质量?
s.ticket = fastrand() | 1
s.parent = last
*pt = s
// 按照 ticket 来进行旋转,以满足 treap 的性质
for s.parent != nil && s.parent.ticket > s.ticket {
if s.parent.prev == s {
root.rotateRight(s.parent)
} else {
if s.parent.next != s {
panic("semaRoot queue")
}
root.rotateLeft(s.parent)
}
}
}
// dequeue 会搜索到阻塞在 addr 地址的 semaRoot 中的第一个 goroutine
// 如果这个 sudog 需要进行 profile,dequeue 会返回它被唤醒的时间(now),否则的话 now 为 0
func (root *semaRoot) dequeue(addr *uint32) (found *sudog, now int64) {
ps := &root.treap
s := *ps
for ; s != nil; s = *ps {
if s.elem == unsafe.Pointer(addr) {
goto Found
}
if uintptr(unsafe.Pointer(addr)) < uintptr(s.elem) {
ps = &s.prev
} else {
ps = &s.next
}
}
return nil, 0
Found:
now = int64(0)
if s.acquiretime != 0 {
now = cputicks()
}
if t := s.waitlink; t != nil {
// 替换掉同样在 addr 上等待的 t。
*ps = t
t.ticket = s.ticket
t.parent = s.parent
t.prev = s.prev
if t.prev != nil {
t.prev.parent = t
}
t.next = s.next
if t.next != nil {
t.next.parent = t
}
if t.waitlink != nil {
t.waittail = s.waittail
} else {
t.waittail = nil
}
t.acquiretime = now
s.waitlink = nil
s.waittail = nil
} else {
// 向下旋转 s 到叶节点,以进行删除,同时要考虑优先级
for s.next != nil || s.prev != nil {
if s.next == nil || s.prev != nil && s.prev.ticket < s.next.ticket {
root.rotateRight(s)
} else {
root.rotateLeft(s)
}
}
// Remove s, now a leaf.
// 删除 s,现在是叶子节点了
if s.parent != nil {
if s.parent.prev == s {
s.parent.prev = nil
} else {
s.parent.next = nil
}
} else {
root.treap = nil
}
}
s.parent = nil
s.elem = nil
s.next = nil
s.prev = nil
s.ticket = 0
return s, now
}
// rotateLeft rotates the tree rooted at node x.
// turning (x a (y b c)) into (y (x a b) c).
func (root *semaRoot) rotateLeft(x *sudog) {
// p -> (x a (y b c))
p := x.parent
a, y := x.prev, x.next
b, c := y.prev, y.next
y.prev = x
x.parent = y
y.next = c
if c != nil {
c.parent = y
}
x.prev = a
if a != nil {
a.parent = x
}
x.next = b
if b != nil {
b.parent = x
}
y.parent = p
if p == nil {
root.treap = y
} else if p.prev == x {
p.prev = y
} else {
if p.next != x {
throw("semaRoot rotateLeft")
}
p.next = y
}
}
// rotateRight rotates the tree rooted at node y.
// turning (y (x a b) c) into (x a (y b c)).
func (root *semaRoot) rotateRight(y *sudog) {
// p -> (y (x a b) c)
p := y.parent
x, c := y.prev, y.next
a, b := x.prev, x.next
x.prev = a
if a != nil {
a.parent = x
}
x.next = y
y.parent = x
y.prev = b
if b != nil {
b.parent = y
}
y.next = c
if c != nil {
c.parent = y
}
x.parent = p
if p == nil {
root.treap = x
} else if p.prev == y {
p.prev = x
} else {
if p.next != y {
throw("semaRoot rotateRight")
}
p.next = x
}
}
notifyList 结构提供给 sync.Cond 使用,用来做条件变量进行通知和唤醒,比较简单。
// notifyList 基于 ticket 进行通知,以实现 sync.Cond 的功能
type notifyList struct {
// wait 是下一个 waiter 应该持有的 ticket 号。该字段会在 notifyList.lock
// 之外被原子地递增。
wait uint32
// notify 字段表示下一个应该唤醒的 waiter 的 ticket 号。该值可以在不持有 notifyList.lock
// 时读取,但写入时,必须持有 lock
//
// Both wait & notify can wrap around, and such cases will be correctly
// handled as long as their "unwrapped" difference is bounded by 2^31.
// For this not to be the case, we'd need to have 2^31+ goroutines
// blocked on the same condvar, which is currently not possible.
notify uint32
// parked 的 waiter,串在 sudog 链表上
lock mutex
head *sudog
tail *sudog
}
// less checks if a < b, considering a & b running counts that may overflow the
// 32-bit range, and that their "unwrapped" difference is always less than 2^31.
func less(a, b uint32) bool {
return int32(a-b) < 0
}
// 这个破玩艺儿其实就只是原子 add l.wait
// 并且要求用户必须把传回去的值,作为 ticket,再传给 notifyListWait,作为 t 参数
// 这样才能把 caller 挂在 l 列表上等待 notification。
//go:linkname notifyListAdd sync.runtime_notifyListAdd
func notifyListAdd(l *notifyList) uint32 {
// This may be called concurrently, for example, when called from
// sync.Cond.Wait while holding a RWMutex in read mode.
return atomic.Xadd(&l.wait, 1) - 1
}
// notifyListWait 等待通知。如果之前已经有人发送过了通知,那么会立刻返回。
// 否则,则会阻塞等待下一个通知
//go:linkname notifyListWait sync.runtime_notifyListWait
func notifyListWait(l *notifyList, t uint32) {
lock(&l.lock)
// 如果这个 ticket 号已经被唤醒过了,马上 return
if less(t, l.notify) {
unlock(&l.lock)
return
}
// 将自己入队
s := acquireSudog()
s.g = getg()
s.ticket = t
s.releasetime = 0
t0 := int64(0)
if l.tail == nil {
l.head = s
} else {
l.tail.next = s
}
l.tail = s
goparkunlock(&l.lock, "semacquire", traceEvGoBlockCond, 3)
if t0 != 0 {
blockevent(s.releasetime-t0, 2)
}
releaseSudog(s)
}
// 这个函数会唤醒在 list 上等待的所有 sudog
//go:linkname notifyListNotifyAll sync.runtime_notifyListNotifyAll
func notifyListNotifyAll(l *notifyList) {
// Fast-path: 如果从上一次唤醒之后,没有新的 waiter 的话
// 就不需要获取锁了
if atomic.Load(&l.wait) == atomic.Load(&l.notify) {
return
}
// Pull the list out into a local variable, waiters will be readied
// outside the lock.
lock(&l.lock)
s := l.head
l.head = nil
l.tail = nil
// 直接把 l.wait 的值赋给 l.notify,因为 l 里的 sudog 全都已经被唤醒了。
// 即使没被唤醒,之后他们也会在将自己添加到 list 之前,注意到自己已经被通知过了(从而立刻返回)。
atomic.Store(&l.notify, atomic.Load(&l.wait))
unlock(&l.lock)
// 遍历列表,ready 所有的 waiter
for s != nil {
next := s.next
s.next = nil
readyWithTime(s, 4)
s = next
}
}
// 这个函数唤醒 list 上的一个 sudog
//go:linkname notifyListNotifyOne sync.runtime_notifyListNotifyOne
func notifyListNotifyOne(l *notifyList) {
// Fast-path: 如果上次通知发生后没有任何新的 waiter 的话
// 完全不需要获取锁
if atomic.Load(&l.wait) == atomic.Load(&l.notify) {
return
}
lock(&l.lock)
// Re-check under the lock if we need to do anything.
t := l.notify
if t == atomic.Load(&l.wait) {
unlock(&l.lock)
return
}
// 更新下一个需要唤醒的 ticket 号
atomic.Store(&l.notify, t+1)
// 尝试找到需要唤醒的 g
// 如果 g 还没有来得及入队,那我们是找不到它的
// 不过这个 g 在 park 之前发现 notify 号变了,会放弃 park 自己
//
// 这个 scan 过程看起来是线性时间的,但基本上都停止得很快。
// Because g's queue separately from taking numbers,
// 可能列表中会有少数重排的情况,但我们期望的是我们寻找的 g 在较前面的位置就行。
// 只有在竞争失败的情况下,g 的前面才会有其它的 g,所以迭代过程不会太持久。
// 这种逻辑甚至适用于 g missing 的情况:
// 没有来得久 sleep,并且已经与我们在 list 上找到的其它 g 的竞争中失败了?
for p, s := (*sudog)(nil), l.head; s != nil; p, s = s, s.next {
if s.ticket == t {
n := s.next
if p != nil {
p.next = n
} else {
l.head = n
}
if n == nil {
l.tail = p
}
unlock(&l.lock)
s.next = nil
readyWithTime(s, 4)
return
}
}
unlock(&l.lock)
}
//go:linkname notifyListCheck sync.runtime_notifyListCheck
func notifyListCheck(sz uintptr) {
if sz != unsafe.Sizeof(notifyList{}) {
print("runtime: bad notifyList size - sync=", sz, " runtime=", unsafe.Sizeof(notifyList{}), "\n")
throw("bad notifyList size")
}
}
//go:linkname sync_nanotime sync.runtime_nanotime
func sync_nanotime() int64 {
return nanotime()
}