forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradio_ui.py
314 lines (269 loc) · 12 KB
/
gradio_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import argparse
import copy
import json
import gradio as gr
import requests
def setup_args():
"""Setup arguments."""
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=8073)
args = parser.parse_args()
return args
def create_src_slider(value, maximum):
return gr.Slider(
minimum=1,
maximum=maximum,
value=value,
step=1,
label="Max Src Length",
info="最大输入长度。",
)
def create_max_slider(value, maximum):
return gr.Slider(
minimum=1,
maximum=maximum,
value=value,
step=1,
label="Max Decoding Length",
info="生成结果的最大长度。",
)
def launch(args, default_params: dict = {}):
"""Launch characters dialogue demo."""
def rollback(state):
"""Rollback context."""
context = state.setdefault("context", [])
utterance = context[-2]["utterance"]
context = context[:-2]
state["context"] = context
shown_context = get_shown_context(context)
return utterance, shown_context, context, state
def regen(state, top_k, top_p, temperature, repetition_penalty, max_length, src_length):
"""Regenerate response."""
context = state.setdefault("context", [])
if len(context) < 2:
gr.Warning("don't have chat history")
shown_context = get_shown_context(context)
return None, shown_context, context, state
context.pop()
user_turn = context.pop()
context.append({"role": "user", "utterance": user_turn["utterance"]})
context.append({"role": "bot", "utterance": ""})
shown_context = get_shown_context(context)
return user_turn["utterance"], shown_context, context, state
def begin(utterance, state):
"""Model inference."""
utterance = utterance.strip().replace("<br>", "\n")
context = state.setdefault("context", [])
if not utterance:
gr.Warning("invalid inputs")
# gr.Warning("请输入有效问题")
shown_context = get_shown_context(context)
return None, shown_context, context, state
context.append({"role": "user", "utterance": utterance})
context.append({"role": "bot", "utterance": ""})
shown_context = get_shown_context(context)
return utterance, shown_context, context, state
def infer(utterance, state, top_k, top_p, temperature, repetition_penalty, max_length, src_length):
"""Model inference."""
utterance = utterance.strip().replace("<br>", "\n")
context = state.setdefault("context", [])
if not utterance:
gr.Warning("invalid inputs")
# gr.Warning("请输入有效问题")
shown_context = get_shown_context(context)
return None, shown_context, context, state
data = {
"context": utterance,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"max_length": max_length,
"src_length": src_length,
"min_length": 1,
}
if len(context) > 2:
data["history"] = json.dumps(context[:-2])
res = requests.post(f"http://0.0.0.0:{args.flask_port}/api/chat", json=data, stream=True)
for index, line in enumerate(res.iter_lines()):
result = json.loads(line)
if result["error_code"] != 0:
gr.Warning(result["error_msg"])
shown_context = get_shown_context(context)
return None, shown_context, context, state
bot_response = result["result"]["response"]
# replace \n with br: https://github.com/gradio-app/gradio/issues/4344
bot_response["utterance"] = bot_response["utterance"].replace("\n", "<br>")
if bot_response["utterance"].endswith("[END]"):
bot_response["utterance"] = bot_response["utterance"][:-5]
# the first character of gradio can not be "<br>" or "<br/>"
if bot_response["utterance"] in ["<br>", "<br/>"] and index == 0:
continue
context[-1]["utterance"] += bot_response["utterance"]
shown_context = get_shown_context(context)
yield None, shown_context, context, state
def clean_context(context):
"""Clean context for EB input."""
cleaned_context = copy.deepcopy(context)
for turn in cleaned_context:
if turn["role"] == "bot":
bot_resp = turn["utterance"]
if bot_resp.startswith("<img src") or bot_resp.startswith("<audio controls>"):
bot_resp = "\n".join(bot_resp.split("\n")[1:])
turn["utterance"] = bot_resp
return cleaned_context
def extract_eda(eb_debug_info):
"""Extract EDA result from EB dispatch info."""
eda_res = None
for item in eb_debug_info:
if item["sys"] == "EDA":
eda_output = json.loads(item["output"])
eda_res = eda_output["result"]
break
return eda_res
def extract_eb_input(eb_debug_info, convert_for_ar=True):
"""Extract EB raw input from EB dispatch info."""
eb_raw_input = None
for item in eb_debug_info:
if item["sys"] == "EB":
eb_output = json.loads(item["output"])
eb_raw_input = eb_output["text_after_process"]
if convert_for_ar:
eb_raw_input = eb_raw_input.replace("[CLS]", "<cls>").replace("[SEP]", "<sep>")
break
return eb_raw_input
def get_shown_context(context):
"""Get gradio chatbot."""
shown_context = []
for turn_idx in range(0, len(context), 2):
shown_context.append([context[turn_idx]["utterance"], context[turn_idx + 1]["utterance"]])
return shown_context
with gr.Blocks(title="LLM", theme=gr.themes.Soft()) as block:
gr.Markdown(f"# {args.title} <font style='color: red !important' size=2>{args.sub_title}</font>")
with gr.Row():
with gr.Column(scale=1):
top_k = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=1,
label="Top-k",
info="该参数越大,模型生成结果更加随机,反之生成结果更加确定。",
)
top_p = gr.Slider(
minimum=0,
maximum=1,
value=default_params.get("top_p", 0.7),
step=0.05,
label="Top-p",
info="该参数越大,模型生成结果更加随机,反之生成结果更加确定。",
)
temperature = gr.Slider(
minimum=0.05,
maximum=1.5,
value=default_params.get("temperature", 0.95),
step=0.05,
label="Temperature",
info="该参数越小,模型生成结果更加随机,反之生成结果更加确定。",
)
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=10,
value=default_params.get("repetition_penalty", 1.2),
step=0.05,
label="Repetition Penalty",
info="该参数越大,生成结果重复的概率越低。设置 1 则不开启。",
)
default_src_length = default_params["src_length"]
total_length = default_params["src_length"] + default_params["max_length"]
src_length = create_src_slider(default_src_length, total_length)
max_length = create_max_slider(min(total_length - default_src_length, 50), total_length)
def src_length_change_event(src_length_value, max_length_value):
return create_max_slider(
min(total_length - src_length_value, max_length_value),
total_length - src_length_value,
)
def max_length_change_event(src_length_value, max_length_value):
return create_src_slider(
min(total_length - max_length_value, src_length_value),
total_length - max_length_value,
)
src_length.change(src_length_change_event, inputs=[src_length, max_length], outputs=max_length)
max_length.change(max_length_change_event, inputs=[src_length, max_length], outputs=src_length)
with gr.Column(scale=4):
state = gr.State({})
context_chatbot = gr.Chatbot(label="Context")
utt_text = gr.Textbox(placeholder="请输入...", label="Utterance")
with gr.Row():
clear_btn = gr.Button("清空")
rollback_btn = gr.Button("撤回")
regen_btn = gr.Button("重新生成")
send_btn = gr.Button("发送")
with gr.Row():
raw_context_json = gr.JSON(label="Raw Context")
utt_text.submit(
begin,
inputs=[utt_text, state],
outputs=[utt_text, context_chatbot, raw_context_json, state],
queue=False,
api_name="chat",
).then(
infer,
inputs=[utt_text, state, top_k, top_p, temperature, repetition_penalty, max_length, src_length],
outputs=[utt_text, context_chatbot, raw_context_json, state],
)
clear_btn.click(
lambda _: (None, None, None, {}),
inputs=clear_btn,
outputs=[utt_text, context_chatbot, raw_context_json, state],
api_name="clear",
show_progress=False,
)
rollback_btn.click(
rollback,
inputs=[state],
outputs=[utt_text, context_chatbot, raw_context_json, state],
show_progress=False,
)
regen_btn.click(
regen,
inputs=[state, top_k, top_p, temperature, repetition_penalty, max_length, src_length],
outputs=[utt_text, context_chatbot, raw_context_json, state],
queue=False,
api_name="chat",
).then(
infer,
inputs=[utt_text, state, top_k, top_p, temperature, repetition_penalty, max_length, src_length],
outputs=[utt_text, context_chatbot, raw_context_json, state],
)
send_btn.click(
begin,
inputs=[utt_text, state],
outputs=[utt_text, context_chatbot, raw_context_json, state],
queue=False,
api_name="chat",
).then(
infer,
inputs=[utt_text, state, top_k, top_p, temperature, repetition_penalty, max_length, src_length],
outputs=[utt_text, context_chatbot, raw_context_json, state],
)
block.queue().launch(server_name="0.0.0.0", server_port=args.port, debug=True)
def main(args, default_params: dict = {}):
launch(args, default_params)
if __name__ == "__main__":
args = setup_args()
main(args)