forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfast_predict.py
184 lines (151 loc) · 7.15 KB
/
fast_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from functools import partial
from pprint import pprint
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from data import convert_example, create_dataloader, read_text_pair
from paddlenlp.data import Pad, Tuple
from paddlenlp.datasets import load_dataset
from paddlenlp.ops import disable_fast_encoder, enable_fast_encoder
from paddlenlp.transformers import ErnieModel, ErnieTokenizer
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--text_pair_file", type=str, required=True, help="The full path of input file")
parser.add_argument("--output_emb_size", default=None, type=int, help="output_embedding_size")
parser.add_argument("--params_path", type=str, required=True, help="The path to model parameters to be loaded.")
parser.add_argument(
"--max_seq_length",
default=64,
type=int,
help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--dropout", default=0.0, type=float, help="Dropout probability.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--seed", default=42, type=int, help="Random seed.")
parser.add_argument("--pad_to_max_seq_len", action="store_true", help="Whether to pad to max_seq_len.")
parser.add_argument("--use_fp16", action="store_true", help="Whether to use fp16.")
args = parser.parse_args()
return args
class SemanticIndexingPredictor(nn.Layer):
def __init__(self, pretrained_model, output_emb_size, bos_id=0, dropout=0, use_fp16=False):
super(SemanticIndexingPredictor, self).__init__()
self.bos_id = bos_id
self.ptm = pretrained_model
self.dropout = nn.Dropout(dropout if dropout is not None else 0.0)
self.output_emb_size = output_emb_size
if output_emb_size > 0:
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=0.02))
self.emb_reduce_linear = paddle.nn.Linear(768, output_emb_size, weight_attr=weight_attr)
self.use_fp16 = use_fp16
def get_pooled_embedding(self, input_ids, token_type_ids=None, position_ids=None):
src_mask = input_ids == self.bos_id
src_mask = paddle.cast(src_mask, "float32")
# [bs, 1, 1, max_len]
src_mask = paddle.unsqueeze(src_mask, axis=[1, 2])
src_mask.stop_gradient = True
ones = paddle.ones_like(input_ids, dtype="int64")
seq_length = paddle.cumsum(ones, axis=1)
position_ids = seq_length - ones
position_ids.stop_gradient = True
embedding_output = self.ptm.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids
)
if self.use_fp16:
embedding_output = paddle.cast(embedding_output, "float16")
sequence_output = self.ptm.encoder(embedding_output, src_mask)
if self.use_fp16:
sequence_output = paddle.cast(sequence_output, "float32")
cls_embedding = self.ptm.pooler(sequence_output)
if self.output_emb_size > 0:
cls_embedding = self.emb_reduce_linear(cls_embedding)
cls_embedding = self.dropout(cls_embedding)
cls_embedding = F.normalize(cls_embedding, p=2, axis=-1)
return cls_embedding
def forward(
self,
query_input_ids,
title_input_ids,
query_token_type_ids=None,
query_position_ids=None,
title_token_type_ids=None,
title_position_ids=None,
):
query_cls_embedding = self.get_pooled_embedding(query_input_ids, query_token_type_ids, query_position_ids)
title_cls_embedding = self.get_pooled_embedding(title_input_ids, title_token_type_ids, title_position_ids)
cosine_sim = paddle.sum(query_cls_embedding * title_cls_embedding, axis=-1)
return cosine_sim
def load(self, init_from_params):
if init_from_params and os.path.isfile(init_from_params):
state_dict = paddle.load(init_from_params)
self.set_state_dict(state_dict)
print("Loaded parameters from %s" % init_from_params)
else:
raise ValueError("Please set --params_path with correct pretrained model file")
def do_predict(args):
paddle.set_device("gpu")
paddle.seed(args.seed)
tokenizer = ErnieTokenizer.from_pretrained("ernie-1.0")
trans_func = partial(
convert_example,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
pad_to_max_seq_len=args.pad_to_max_seq_len,
)
def batchify_fn(samples):
fn = Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # query_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # query_segment
Pad(axis=0, pad_val=tokenizer.pad_token_id), # title_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # title_segment
)
return [data for data in fn(samples)]
valid_ds = load_dataset(read_text_pair, data_path=args.text_pair_file, lazy=False)
valid_data_loader = create_dataloader(
valid_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
)
pretrained_model = ErnieModel.from_pretrained("ernie-1.0")
model = SemanticIndexingPredictor(
pretrained_model, args.output_emb_size, dropout=args.dropout, use_fp16=args.use_fp16
)
model.eval()
model.load(args.params_path)
model = enable_fast_encoder(model, use_fp16=args.use_fp16)
cosine_sims = []
for batch_data in valid_data_loader:
query_input_ids, query_token_type_ids, title_input_ids, title_token_type_ids = batch_data
query_input_ids = paddle.to_tensor(query_input_ids)
query_token_type_ids = paddle.to_tensor(query_token_type_ids)
title_input_ids = paddle.to_tensor(title_input_ids)
title_token_type_ids = paddle.to_tensor(title_token_type_ids)
batch_cosine_sim = model(
query_input_ids=query_input_ids,
title_input_ids=title_input_ids,
query_token_type_ids=query_token_type_ids,
title_token_type_ids=title_token_type_ids,
).numpy()
cosine_sims.append(batch_cosine_sim)
cosine_sims = np.concatenate(cosine_sims, axis=0)
for cosine in cosine_sims:
print("{}".format(cosine))
model = disable_fast_encoder(model)
if __name__ == "__main__":
args = parse_args()
pprint(args)
do_predict(args)