-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
240 lines (186 loc) · 7.95 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from math import exp
import torch
from torch import nn
from torchvision.models.vgg import vgg16
import torch.nn.functional as F
class GeneratorLoss(nn.Module):
def __init__(self):
super(GeneratorLoss, self).__init__()
# loss_network = nn.Sequential(
# nn.Conv2d(1, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
# *list(vgg.features)[:31]
# ).eval()
vgg = vgg16(pretrained=True)
vgg = VGG(vgg.features[:23]).eval()
self.vgg16 = vgg
self.mse_loss = nn.MSELoss()
self.tv_loss = TVLoss()
def forward(self, out_labels, out_images, target_images):
# Adversarial Loss
adversarial_loss = torch.mean(1 - out_labels)
out_features = self.vgg16(out_images)
target_features = self.vgg16(target_images)
# style loss
style_grams = [gram_matrix(x) for x in target_features]
out_grams = [gram_matrix(x) for x in out_features]
style_loss = 0
for a, b in zip(out_grams, style_grams):
style_loss += self.mse_loss(a, b)
# Perception Loss
perception_loss = 0
for a, b in zip(out_features, target_features):
perception_loss += self.mse_loss(a, b)
# perception_loss = self.mse_loss(out_features[2], target_features[2])
# Image Loss
image_loss = self.mse_loss(out_images, target_images)
# TV Loss
tv_loss = self.tv_loss(out_images)
# return image_loss + 0.001 * adversarial_loss + 0.006 * perception_loss + 2e-8 * tv_loss + 0.01 * sequence_loss
# return image_loss + 0.001 * adversarial_loss + 0.06 * perception_loss + 2e-8 * tv_loss # + 0.01 * sequence_loss
# return image_loss
# return image_loss + 0.006 * perception_loss
# return image_loss + 0.1 * perception_loss + 0.001 * adversarial_loss
return 1 * image_loss + 1 * perception_loss + 1e6 * style_loss + 2e-8 * tv_loss
class CNNLoss(nn.Module):
def __init__(self):
super(CNNLoss, self).__init__()
vgg = vgg16(pretrained=True)
vgg = VGG(vgg.features[:23]).eval()
self.vgg16 = vgg
self.mse_loss = nn.MSELoss()
self.l1_loss = CharbonnierLoss()
self.tv_loss = TVLoss()
self.ssim_loss = SsimLoss()
def forward(self, out_images, target_images):
out_features = self.vgg16(out_images)
target_features = self.vgg16(target_images)
# style loss
style_grams = [gram_matrix(x) for x in target_features]
out_grams = [gram_matrix(x) for x in out_features]
style_loss = 0
for a, b in zip(out_grams, style_grams):
style_loss += self.mse_loss(a, b)
# Perception Loss
perception_loss = 0
for a, b in zip(out_features, target_features):
perception_loss += self.mse_loss(a, b)
# perception_loss = self.mse_loss(out_features[2], target_features[2])
# Image Loss
image_loss = self.mse_loss(out_images, target_images)
#image_loss = self.l1_loss(out_images, target_images)
# TV Loss
tv_loss = self.tv_loss(out_images)
# SSIM Loss
ssim_loss = self.ssim_loss(out_images, target_images)
# return image_loss
#return 1 * image_loss
return 1 * image_loss + 1 * perception_loss + 1e6 * style_loss
# return 1 * image_loss + 1e-2 * perception_loss + 1e4 * style_loss + 2e-6 * tv_loss
# return 1 * image_loss + 1e-2 * perception_loss + 1e4 * style_loss + 2e-6 * tv_loss + 1 * ssim_loss
# return 1 * image_loss + 1 * ssim_loss
class CharbonnierLoss(nn.Module):
"""Charbonnier Loss (L1)"""
def __init__(self, eps=1e-6):
super(CharbonnierLoss, self).__init__()
self.eps = eps
def forward(self, x, y):
diff = x - y
loss = torch.mean(torch.sqrt(diff * diff + self.eps))
return loss
class TVLoss(nn.Module):
def __init__(self, tv_loss_weight=1):
super(TVLoss, self).__init__()
self.tv_loss_weight = tv_loss_weight
def forward(self, x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self.tensor_size(x[:, :, 1:, :])
count_w = self.tensor_size(x[:, :, :, 1:])
h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
return self.tv_loss_weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size
@staticmethod
def tensor_size(t):
return t.size()[1] * t.size()[2] * t.size()[3]
class VGG(nn.Module):
def __init__(self, features):
super(VGG, self).__init__()
self.features = features
self.layer_name_mapping = {
'3': "relu1_2",
'8': "relu2_2",
'15': "relu3_3",
'22': "relu4_3"
}
for p in self.parameters():
p.requires_grad = False
def forward(self, x):
outs = []
for name, module in self.features._modules.items():
x = module(x)
if name in self.layer_name_mapping:
outs.append(x)
return outs
def gram_matrix(y):
b, ch , h, w = y.shape
features = y.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (ch * h * w)
return gram
class SsimLoss(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(SsimLoss, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return 1 - _ssim(img1, img2, window, self.window_size, channel, self.size_average)
def ssim(img1, img2, window_size=11, size_average=True):
if len(img1.size()) == 3:
img1 = torch.stack([img1], dim=0)
img2 = torch.stack([img2], dim=0)
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
if __name__ == "__main__":
g_loss = GeneratorLoss()
print(g_loss)