- Image Restoration
- Image Dehazing
- Image Debluring
- Reflection Removal
- Image Inpainting
- De-raining
- Image Demoireing
- Image Debanding
-
mage Restoration with Mean-Reverting Stochastic Differential Equations
Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön
[ICML 2023] [Pytorch-Code]
[IC-SDE] -
Contrastive Semi-supervised Learning for Underwater Image Restoration via Reliable Bank
Shirui Huang, Keyan Wang, Huan Liu, Jun Chen, Yunsong Li
[CVPR 2023] [Pytorch-Code] -
TAPE: Task-Agnostic Prior Embedding for Image Restoration
Lin Liu, Lingxi Xie, Xiaopeng Zhang, Shanxin Yuan, Xiangyu Chen, Wengang Zhou, Houqiang Li, Qi Tian
[ECCV 2022] [Project] -
Improving Image Restoration by Revisiting Global Information Aggregation
Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu
[ECCV 2022] [Pytorch-Code]
[TLC] -
D2HNet: Joint Denoising and Deblurring with Hierarchical Network for Robust Night Image Restoration
Yuzhi Zhao, Yongzhe Xu, Qiong Yan, Dingdong Yang, Xuehui Wang, Lai-Man Po
[ECCV 2022] [Pytorch-Code] -
Simple baselines for image restoration
Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, Jian Sun
[ECCV 2022] [Pytorch-Code]
[NAFNet] -
Learning Multiple Adverse Weather Removal via Two-stage Knowledge Learning and Multi-contrastive Regularization: Toward a Unified Model
Wei-Ting Chen, Zhi-Kai Huang, Cheng-Che Tsai, Hao-Hsiang Yang, Jian-Jiun Ding, Sy-Yen Kuo
[CVPR 2022] [Pytorch-Code] -
TransWeather: Transformer-based Restoration of Images Degraded by Adverse Weather Conditions
Jeya Maria Jose, Rajeev Yasarla, Vishal M. Patel
[CVPR 2022] [Project] [Pytorch-Code] -
Attentive Fine-Grained Structured Sparsity for Image Restoration
Junghun Oh, Heewon Kim, Seungjun Nah, Cheeun Hong, Jonghyun Choi, Kyoung Mu Lee
[CVPR 2022] [Pytorch-Code] -
Deep Generalized Unfolding Networks for Image Restoration
Chong Mou, Qian Wang, Jian Zhang
[CVPR 2022] [Pytorch-Code] -
All-In-One Image Restoration for Unknown Corruption
Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, Xi Peng
[CVPR 2022] [Pytorch-Code]
[AirNet] -
A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift
Shi Guo, Xi Yang, Jianqi Ma, Gaofeng Ren, Lei Zhang
[CVPR 2022] [Pytorch-Code] -
Burst Image Restoration and Enhancement
Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, Ming-Hsuan Yang
[CVPR 2022 Oral] [Pytorch-Code]
[BIPNet] -
Uformer: A General U-Shaped Transformer for Image Restoration
Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, Houqiang Li
[CVPR 2022] [Pytorch-Code] -
Restormer: Efficient Transformer for High-Resolution Image Restoration
Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang
[CVPR 2022 Oral] [Pytorch-Code] -
Residual-Guided Multiscale Fusion Network for Bit-Depth Enhancement
Jing Liu , Xin Wen, Weizhi Nie, Yuting Su, Peiguang Jing, Xiaokang Yang
[CSVT 2021]
[★] -
SwinIR: Image Restoration Using Swin Transformer
Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, Radu Timofte
[ICCVW 2021] [Pytorch-Code] -
Learning Dual Priors for JPEG Compression Artifacts Removal
Xueyang Fu, Xi Wang, Aiping Liu, Junwei Han, Zheng-Jun Zha
[ICCV 2021] [TF-Code] -
Towards Flexible Blind JPEG Artifacts Removal
Jiaxi Jiang, Kai Zhang, Radu Timofte
[ICCV 2021] [Pytorch-Code]
[FBCNN] -
Dual Pixel Exploration: Simultaneous Depth Estimation and Image Restoration
Liyuan Pan, Shah Chowdhury, Richard Hartley, Miaomiao Liu, Hongguang Zhang, Hongdong Li
[CVPR 2021 Oral] [Code] -
Controllable Image Restoration for Under-Display Camera in Smartphones
Kinam Kwon, Eunhee Kang, Sangwon Lee, Su-Jin Lee, Hyong-Euk Lee, ByungIn Yoo, Jae-Joon Han
[CVPR 2021] -
Removing Diffraction Image Artifacts in Under-Display Camera via Dynamic Skip Connection Networks
Ruicheng Feng, Chongyi Li, Huaijin Chen, Shuai Li, Chen Change Loy, Jinwei Gu
[CVPR 2021] [Project] [Pytorch-Code]
[DISCNet] [★★] (UDC图像修复) 使用中兴UDC相机, 模拟Point Spread Function(PSF), 并生成数据集. 网络使用动态卷积, 并加入PSF kernel, 为模型提供先验信息. -
Image Restoration for Under-Display Camera
Yuqian Zhou, David Ren, Neil Emerton, Sehoon Lim, Timothy Large
[CVPR 2021] [Project] -
Multi-Stage Progressive Image Restoration
Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
[CVPR 2021] [Pytorch-Code]
[MPRNet] [★] 多阶段结构, 用了attention等一些trick -
COLA-Net: Collaborative Attention Network for Image Restoration
Chong Mou, Jian Zhang, Xiaopeng Fan, Hangfan Liu, Ronggang Wang
[MM 2021] [Project] -
Pyramid Attention Networks for Image Restoration
Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, Radu Timofte,
[TPAMI 2021] [Pytorch-Code]
[DPIR] -
Pyramid Attention Networks for Image Restoration
Yiqun Mei, Yuchen Fan, Yulun Zhang, Jiahui Yu, Yuqian Zhou, Ding Liu, Yun Fu, Thomas S. Huang, Humphrey Shi
[arXiv 2004] [Pytorch-Code]
[PANet] -
Neural Sparse Representation for Image Restoration
Yuchen Fan, Jiahui Yu, Yiqun Mei, Yulun Zhang, Yun Fu, Ding Liu, Thomas S. Huang
[NeurIPS 2020] [Code]
[NSR] -
Scale-wise Convolution for Image Restoration
Yuchen Fan, Jiahui Yu, Ding Liu, Thomas S. Huang
[AAAI 2020] [Pytorch-Code]
[SCN] -
Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation
Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy, Ping Luo
[ECCV 2020 Oral] [Pytorch-Code]
[DGP] [★★] 提出用预训练的GAN作为先验, 无需在特定任务上finetune, 即可实现超分, 上色等图像恢复任务和图像变形,类别转换等图像编辑功能. 论文主要是在一般GAN inversion的基础上, 提出同时优化隐向量z和生成网络参数, 达到了更好更自然的效果. -
Stacking Networks Dynamically for Image Restoration Based on the Plug-and-Play Framework
Haixin Wang, Tianhao Zhang, Muzhi Yu, Jinan Sun, Wei Ye, Chen Wang, Shikun Zhang
[ECCV 2020] -
Blind Image Restoration without Prior Knowledge
Noam Elron, Shahar S. Yuval, Dmitry Rudoy, Noam Lev
[ECCV 2020]
[SNSC] [★] 提出了一个Self-Normalization Side-Chain模块, 用来提取全局信息 -
LIRA: Lifelong Image Restoration from Unknown Blended Distortions
Jianzhao Liu, Jianxin Lin, Xin Li, Wei Zhou, Sen Liu, Zhibo Chen
[ECCV 2020] -
Interactive Multi-Dimension Modulation with Dynamic Controllable Residual Learning for Image Restoration
Jingwen He, Chao Dong, Yu Qiao
[ECCV 2020] [Pytorch-Code]
[CResMD] [★] (控制restoration level) 将控制参数由一个扩展为多个, 处理不同种类不同程度的退化, 输入的参数由若干FC层处理为权值vector, 作为残差块中的卷积分支的scale. 提出了一些trick训练不同退化的数据. 虽然论文表示可以处理多种退化情形, 但是用户手动调节两个甚至更多参数还是挺麻烦的. -
Microscopy Image Restoration with Deep Wiener-Kolmogorov filters
Valeriya Pronina, Filippos Kokkinos, Dmitry V. Dylov, Stamatios Lefkimmiatis
[ECCV 2020] [Project] [Pytorch-Code] -
Fully Trainable and Interpretable Non-Local Sparse Models for Image Restoration
Bruno Lecouat, Jean Ponce, Julien Mairal
[ECCV 2020] [Pytorch-Code]
[GroupSC] -
Learning Disentangled Feature Representation for Hybrid-distorted Image Restoration
Xin Li, Xin Jin, Jianxin Lin, Tao Yu, Sen Liu, Yaojun Wu, Wei Zhou, Zhibo Chen
[ECCV 2020]
[★] (处理多种退化) 大致浏览, 通过gain-control-based normalization学习解耦特征, 并据此设计了几个模块, 处理多种退化混合问题. 文中使用了spectral value di�erence orthogonality regularization作为一个loss, 促使feature map直接学到不相关的信息. -
Learning Enriched Features for Real Image Restoration and Enhancement
Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
[ECCV 2020] [Pytorch-Code]
[MIRNet] [★] 提出了一个就多尺度特征融合的网络用于去噪, 超分, 增强等任务. 使用attention的思想设计了很多模块, 性能不错, 在各种任务上适用性看起来较强 -
Bringing Old Photos Back to Life
Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong Chen, Jing Liao, Fang Wen
[CVPR 2020 Oral] [Project]
[★★☆] (无监督, domain transfer) 无监督老照片恢复, 用生成的老照片训练, 在真实老照片上取得好效果. 使用一个VAE将真实和生成的照片映射到相近的空间, 第二个VAE负责恢复无损照片, 中间还有一些映射等操作. -
Fast Underwater Image Enhancement for Improved Visual Perception
Md Jahidul Islam, Youya Xia, Junaed Sattar
[RAL 2020] [Code]
[FUnIE-GAN] [★] encoder-decoder结构, 使用了几个目标函数从各方面增强图像视觉质量. 提出了一个水下图像数据集. -
Dual Residual Networks Leveraging the Potential of Paired Operations for Image Restoration
Xing Liu, Masanori Suganuma, Zhun Sun, Takayuki Okatani
[CVPR 2019] [Code]
[DuRN] [★☆] 1) 文章提出, 许多图像复原任务都由一些成对的模块组成, 比如去噪里的大kernel和小kernel, 超分里的下采样和上采样. 本文在residual connection的基础上, 进一步给每个模块内部的操作直接加入residual connection, 增加了组合数. 2) 在去噪, 去模糊, 去雾等任务中都取得了不错的效果. -
Attention-based Adaptive Selection of Operations for Image Restoration in the Presence of Unknown Combined Distortions
Masanori Suganuma, Xing Liu, Takayuki Okatani
[CVPR 2019] [Code]
[★☆] (处理多种退化) 提出用一个基于attention的操作加权网络, 用来处理不同种类的degradation. 性能一般, 不太容易收敛, 思路值得借鉴. -
Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers
Jingwen He, Chao Dong, Yu Qiao
[CVPR 2019] [Pytorch-Code]
[AdaFM] [★☆] (控制restoration level) 提出了一个AdaFM模块, 用于控制网络对图像的修复程度. AdaFM模块实际上就是一个dw conv层, 通过手动控制该层的权重, 达到控制修复程度的目的. 论文这么做是基于两个发现: 1) 对于不同restoration level, 网络提取的visual patterns是相似的, 只是weights不同; 2)调整网络内部参数对输出的影响是连续的. -
CFSNet: Toward a Controllable Feature Space for Image Restoration
Wei Wang, Ruiming Guo, Yapeng Tian, Wenming Yang
[ICCV 2019] [Pytorch-Code]
[★] (控制restoration level) 粗读, 用一个手动输入的参数控制两个分支的权重, 一个分支负责low distortion修复, 另一个分支负责high visual quality. 两个分支通过使用不同loss (L1, L2 v.s. vgg, GAN loss) 训练来得到. 文章的效果和实用性有待检验, 思路可借鉴. -
Gated Context Aggregation Network for Image Dehazing and Deraining
Dongdong Chen, Mingming He, Qingnan Fan
[WACV 2019] [Code]
[GCANet] [★] 在dilation卷积前加入可分离卷积, 消除grid effect. 除去雾去雨外应该也适合其它任务. -
Learning Dual Convolutional Neural Networks for Low-Level Vision
Jinshan Pan, Sifei Liu, Deqing Sun, Jiawei Zhang, Yang Liu, Jimmy Ren, Zechao Li, Jinhui Tang, Huchuan Lu, Yu-Wing Tai, Ming-Hsuan Yang
[CVPR 2018] [Project] [Unofficial-TF-Code]
[DualCNN] [★] 粗读, 设计了一双分支网络, 一个学习detail, 一个学习structure, 针对任务对两个分支也分别进行监督训练 -
Deep Image Prior
Dmitry Ulyanov, Andrea Vedald, Victor Lempitsky
[CVPR 2018] [Project]
[★★] (zero-shot) 1) 一篇有趣的论文, 提出深度卷积网络在图像生成和恢复任务中表现好的原因, 可能并不是因为其从大量图像中学习到了某种先验, 其实随机初始化的网络足以从输入中抓取大量的low-level图像先验信息. 在通过迭代的方式从图像中学习先验的过程中, 那些自然的, 有规律的内容较容易提取,会先被学习出来, 因此就达到了去噪或其它restoration的目的. 2) 粗读, 实用性有待验证, 有时间可以好好研究一下. -
Image Companding and Inverse Halftoning using Deep Convolutional Neural Networks
Xianxu Hou, Guoping Qiu
[arXiv 1707]
[★] CNN做Image Companding和Inverse Halftoning
-
Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition
Yang Yang, Chaoyue Wang, Risheng Liu, Lin Zhang, Xiaojie Guo, Dacheng Tao
[CVPR 2022]
[D4] -
Ultra-High-Definition Image Dehazing via Multi-Guided Bilateral Learning
Zhuoran Zheng, Wenqi Ren, Xiaochun Cao, Xiaobin Hu, Tao Wang, Fenglong Song, Xiuyi Jia
[CVPR 2021] -
Contrastive Learning for Compact Single Image Dehazing
Haiyan Wu, Yanyun Qu, Shaohui Lin
[CVPR 2021] [Pytorch-Code]
[AECR-Net] -
Physics-based Feature Dehazing Networks
Jiangxin Dong, Jinshan Pan
[ECCV 2020] [Project] -
Multi-Scale Boosted Dehazing Network with Dense Feature Fusion
Hang Dong, Jinshan Pan, Zhe Hu, Xiang Lei, Xinyi Zhang, Fei Wang, Ming-Hsuan Yang
[CVPR 2020] [Pytorch-Code]
[MSBDN-DFF] [★☆] 粗读, Unet结合超分中的Deep Back-Projection, 有时间可以研究一下反投影的原理和代码 -
Domain Adaptation for Image Dehazing
Yuanjie Shao, Lerenhan Li, Wenqi Ren, Changxin Gao, Nong Sang
[CVPR 2020] [Pytorch-Code]
[★☆] 粗读, 提出了一个生成数据集训练的网络迁移到真实图像去雾中的框架, 使用两个变换网络和GAN完成Syn和Real数据间的相互迁移. -
FFA-Net: Feature Fusion Attention Network for Single Image Dehazing
Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, Huizhu Jia
[AAAI 2020] [Pytorch-Code] -
Densely Connected Pyramid Dehazing Network
He Zhang, Vishal M. Patel
[CVPR 2018] [Pytorch-Code]
[DCPDN] [★] 两分支网络, transmission map通过类似dense-net的网络预测, 大气光照假设是一全局常量并通过一UNet预测, 两分支结果经大气散射模型公式的计算, 恢复清晰RGB. 使用了L2, VGG loss, gradient loss和GAN loss. -
Single Image Dehazing via Multi-Scale Convolutional Neural Networks
Wenqi Ren, Si Liu, Hua Zhang, Jinshan Pan, Xiaochun Cao, Ming-Hsuan Yang
[CVPR 2018] [Project] [Matlab-Code] [Unofficial-TF-Code]
[☆] 大致浏览, 一个多尺度去雾网络, coarse尺度预测transmission map, fine尺度预测去雾图像, 用深度图生成transmmision map训练 -
Gated Fusion Network for Single Image Dehazing
Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun Cao, Wei Liu, Ming-Hsuan Yang
[CVPR 2018] [Project] [MatCaffe-Code]
[GFN] -
AOD-NET:An All-in-One Network for Dehazing and Beyond
Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, Dan Feng
[ICCV 2017] [Project] [Pytorch&Caffe-Code]
[★] 轻量级去雾网络, 通过预测一个变量, 直接输出清晰的RGB图像 -
DehazeNet: An End-to-End System for Single Image Haze Removal
Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, Dacheng Tao, Lingke Zeng
[TIP 2016] [Project] [Matlab-Code]
[☆] 端到端预测透射率map
-
Fast Two-step Blind Optical Aberration Correction
Thomas Eboli, Jean-Michel Morel, Gabriele Facciolo
[ECCV 2022] [Project] [Code] -
Learning to Deblur using Light Field Generated and Real Defocus Images
Lingyan Ruan, Bin Chen, Jizhou Li, Miuling Lam
[CVPR 2022 Oral] [Project] [Pytorch-Code]
[DRBNet] -
E-CIR: Event-Enhanced Continuous Intensity Recovery
Chen Song, Qixing Huang, Chandrajit Bajaj
[CVPR 2022] [Pytorch-Code] -
Polyblur: Removing mild blur by polynomial reblurring
Mauricio Delbracio, Ignacio Garcia-Dorado, Sungjoon Choi, Damien Kelly, Peyman Milanfar
[TCI 2021] [Google] -
Explore Image Deblurring via Encoded Blur Kernel Space
P.Tran, A.Tran, Q.Phung, M. Hoai
[CVPR 2021] [Pytorch-Code] -
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes
Zhihang Zhong, Yinqiang Zheng, Imari Sato
[CVPR 2021] [Pytorch-Code]
[RSCD] -
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Jiri Matas, Marc Pollefeys
[CVPR 2021] [Pytorch-Code] -
Learning a Non-blind Deblurring Network for Night Blurry Images
Liang Chen, Jiawei Zhang, Jinshan Pan, Songnan Lin, Faming Fang, Jimmy Ren
[CVPR 2021] -
Deblurring by Realistic Blurring
Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn Stenger, Wei Liu, Hongdong Li
[CVPR 2020] -
Learning Event-Based Motion Deblurring
Zhe Jiang, Yu Zhang, Dongqing Zou, Jimmy Ren, Jiancheng Lv, Yebin Liu
[CVPR 2020] -
Efficient Dynamic Scene Deblurring Using Spatially Variant Deconvolution Network With Optical Flow Guided Training
Yuan Yuan, Wei Su, Dandan Ma
[CVPR 2020] -
Spatially-Attentive Patch-Hierarchical Network for Adaptive Motion Deblurring
Maitreya Suin, Kuldeep Purohit, A. N. Rajagopalan
[CVPR 2020] -
Variational-EM-Based Deep Learning for Noise-Blind Image Deblurring
Yuesong Nan, Yuhui Quan, Hui Ji
[CVPR 2020] -
Deblurring Using Analysis-Synthesis Networks Pair
Adam Kaufman, Raanan Fattal
[CVPR 2020] -
Deep Learning for Handling Kernel/model Uncertainty in Image Deconvolution
Yuesong Nan, Hui Ji
[CVPR 2020] -
All in One Bad Weather Removal using Architectural Search
Ruoteng Li, Robby T. Tan, Loong-Fah Cheong
[CVPR 2020] -
DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better
Orest Kupyn, Tetiana Martyniuk, Junru Wu, Zhangyang Wang
[ICCV 2019] [Pytorch-Code]
[★☆] DeblurGAN基础上的改进, 把生成网络换成了FPN, 设计了新的loss, 效果更快更好了 -
Gyroscope-Aided Motion Deblurring with Deep Network
Janne Mustaniemi, Juho Kannala, Simo Särkkä, [J]iri Matas](https://cmp.felk.cvut.cz/~matas/), Janne Heikkilä
[WACV 2019]
[DeepGyro] [★] 结合陀螺仪作为先验deblur. 从陀螺仪和图像拍摄信息生成训练集的方法可以参考. -
Douglas-Rachford Networks: Learning Both the Image Prior and Data Fidelity Terms for Blind Image Deconvolution
Raied Aljadaany, Dipan K. Pal, Marios Savvides
[CVPR 2019]
[Dr-Net] [★☆] 1) 基于Douglas-Rachford迭代优化求解blind deconvolution的思路(不懂), 提出了一个由简单conv和连接操作组成的Dr Block, 将其嵌入普通卷积网络中, 用L2和GAN loss训练, 取得了不错的效果. 2) 网络细节没看, 可以借鉴其模块设计 -
Deep Stacked Multi-patch Hierarchical Network for Image Deblurring
Hongguang Zhang, Yuchao Dai, Hongdong Li, Piotr Koniusz
[CVPR 2019] [Pytorch-Code]
[DMPHN] [☆] 从spatial pyramid matching的角度出发, 提出了一个分patch的逐层融合处理的网络, 参数少速度快. 但个人仍不理解这种分patch的做法对CNN来说到底有什么意义. -
Human-Aware Motion Deblurring
Ziyi Shen, Wenguan Wang, Xiankai Lu, Jianbin Shen, Haibin Ling, Tingfa Xu, Ling Shao
[ICCV 2019] [Project] [HIDE Dataset]
[HA-Deblur] [★☆] 1. 提出了HIDE数据集, 主要关注对人体的deblur. 2. 提出了一个多分支deblur网络, 根据human-aware子网络预测前背景生成weight map, 将多分枝信息融合处理后输出 -
A Deep Encoder-Decoder Network For Joint Deblurring and Super-Resolution
Xinyi Zhang, Fei Wang, Hang Dong, Yu Guo
[ICASSP 2018] [Project]
[ED-DSRN] [☆] 大致浏览, 一个端到端的同时deblur和超分网络 -
Gated Fusion Network for Joint Image Deblurring and Super-Resolution
Xinyi Zhang, Hang Dong, Zhe Hu, Wei-Sheng Lai, Fei Wang, Ming-Hsuan Yang
[BMVC 2018] [Project] [Pytorch-Code]
[GFN] [★☆] 1) 提出了一个同时做deblur和超分的网络. 网络有两个分支, 一个encoder-decoder结构做deblur, 一个不降分辨率做SR, 用一个几层卷积组成的gate模块选择特征. 2) 思路简单, 可以尝试. -
DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, Jiří Matas
[CVPR 2018] [Pytorch-Code] [Unofficial-TF-Code1] [Unofficial-TF-Code2]
[★★] 1) 用GAN做deblur的一篇典型文章, 效果不错. 2) 生成网络结构简单, 采用残差形式. 3) 提出了生成blur数据的方法, 可以参考一下. -
Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring
Seungjun Nah, Tae Hyun Kim, Kyoung Mu Lee
[CVPR 2017 Spotlight] [Code]
[★☆] 1) 提出了GOPRO单张图像deblur数据集. 2) 提出了一个多尺度输入的去噪网络
-
How to Train Neural Networks for Flare Removal
Yicheng Wu, Qiurui He, Tianfan Xue, Rahul Garg, Jiawen Chen, Ashok Veeraraghavan, Jonathan T. Barron
[ICCV 2021] [Project] [TF2-Code] -
Location-aware Single Image Reflection Removal
Zheng Dong, Ke Xu, Yin Yang, Hujun Bao, Weiwei Xu, Rynson W.H. Lau
[ICCV 2021] [Pytorch-Code] -
Panoramic image reflection removal
Yuchen Hong, Qian Zheng, Lingran Zhao, Xudong Jiang, Alex C. Kot, Boxin Shi
[CVPR 2021] -
Single image reflection removal with absorption effect
Qian Zheng, Boxin Shi, Jinnan Chen, Xudong Jiang, Ling-Yu Duan, Alex C. Kot
[CVPR 2021] [Pytorch-Code] -
Robust Reflection Removal with Reflection-free Flash-only Cues
Chenyang Lei, Qifeng Chen
[CVPR 2021] [Project] [TF-Code] -
Reflection scene separation from a single image
Renjie Wan, Boxin Shi, Haoliang Li, Ling-Yu Duan, Alex C. Kot
[CVPR 2020] -
Learning to See Through Obstructions
Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu Chuang, Jia-Bin Huang
[CVPR 2020] [Project] [TF-Code]
[★★] 使用多帧和光流的思想去反射. 用多帧处理去反射问题与单帧相比更可靠一些, 本文的网络设计值得学习. -
Single Image Reflection Removal through Cascaded Refinement
Chao Li, Yixiao Yang, Kun He, Stephen Lin, John E. Hopcroft
[CVPR 2020] [Pytorch-Code]
[IBCLN] -
Polarized Reflection Removal with Perfect Alignment in the Wild
Chenyang Lei, Xuhua Huang, Mengdi Zhang, Qiong Yan, Wenxiu Sun, Qifeng Chen
[CVPR 2020] [Project] [TF-Code] -
Single Image Reflection Removal with Physically-Based Training Images
Soomin Kim, Yuchi Huo, Sung-Eui Yoon
[CVPR 2020 Oral] [Project] [TF-Code] -
Single Image Reflection Removal Beyond Linearity
Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, Guoqiang Han, and Shengfeng He
[CVPR 2019] [Pytorch-Code] -
Learning to jointly generate and separate reflections
Daiqian Ma, Renjie Wan, Boxin Shi, Haoliang Li, Ling-Yu Duan
[ICCV 2019] -
Single Image Reflection Removal with Perceptual Losses
Xuaner Zhang, Ren Ng, Qifeng Chen
[CVPR 2018] [Project] [TF-Code]
[★☆] VGG19的多层特征作为hypercolumn与图像串联作为输入, 一个网络同时预测transmission和reflection, 使用pixel, VGG和GAN loss, 另外提出了一个gradient exclusion loss. -
ReflectNet: Separating Reflection and Transmission Images in the Wild
Patrick Wieschollek, Orazio Gallo, Jinwei Gu, Jan Kautz
[ECCV 2018] [Project] [TF-Code] -
Deep Bidirectional Estimation for Single Image Reflection Removal
Jie Yang, Dong Gong, Lingqiao Liu, Qinfeng Shi
[ECCV 2018] [Pytorch-Code]
[BDN]
-
MAT: Mask-Aware Transformer for Large Hole Image Inpainting
Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia
[CVPR 2022 Oral] [Pytorch-Code] -
RePaint: Inpainting using Denoising Diffusion Probabilistic Models
Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc Van Gool
[CVPR 2022] [Pytorch-Code] -
Reduce Information Loss in Transformers for Pluralistic Image Inpainting
Qiankun Liu, Zhentao Tan, Dongdong Chen, Qi Chu, Xiyang Dai, Yinpeng Chen, Mengchen Liu, Lu Yuan, Nenghai Yu
[CVPR 2022] [Pytorch-Code]
[PUT] -
MISF: Multi-level Interactive Siamese Filtering for High-Fidelity Image Inpainting
Xiaoguang Li, Qing Guo, Di Lin, Ping Li, Wei Feng, Song Wang
[CVPR 2022] [Pytorch-Code] -
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding
Qiaole Dong, Chenjie Cao, Yanwei Fu
[CVPR 2022] [Project] [Pytorch-Code] -
Bridging Global Context Interactions for High-Fidelity Image Completion
Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai, Dinh Phung
[CVPR 2022] [Pytorch-Code]
[TFill] -
HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, Qifeng Chen
[CVPR 2022] [Project] [Pytorch-Code] -
High-Fidelity Pluralistic Image Completion with Transformers
Ziyu Wan, Jingbo Zhang, Dongdong Chen, Jing Liao
[ICCV 2021] [Project] [Pytorch-Code]
[ICT] -
Image Inpainting with External-Internal Learning and Monochromic Bottleneck
Tengfei Wang, Hao Ouyang, Qifeng Chen
[CVPR 2021] [Project] [] [Pytorch-Code]
[EII] -
Generating Diverse Structure for Image Inpainting with Hierarchical VQ-VAE
Jialun Peng, Dong Liu, Songcen Xu, Houqiang Li
[CVPR 2021] [Pytorch-Code] -
TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations
Yuqian Zhou, Connelly Barnes, Eli Shechtman, Sohrab Amirghodsi
[CVPR 2021] [Project] [Pytorch-Code] -
PD-GAN:Probabilistic Diverse GAN for Image Inpainting
Hongyu Liu, Ziyu Wan, Wei Huang, Yibing Song, Xintong Han, Jing Liao
[CVPR 2021] [Pytorch-Code] -
Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations
Hongyu Liu, Bin Jiang, Yibing Song, Wei Huang, Chao Yang
[ECCV 2020 Oral] [Pytorch-Code] -
High-Resolution Image Inpainting with Iterative Confidence Feedback and Guided Upsampling
Yu Zeng, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shechtman, Huchuan Lu
[ECCV 2020] [Project]
[ProFill] -
VCNet: A Robust Approach to Blind Image Inpainting
Yi Wang, Ying-Cong Chen, Xin Tao, Jiaya Jia
[ECCV 2020] [Code]] -
Guidance and Evaluation: Semantic-Aware Image Inpainting for Mixed Scenes
Liang Liao, Jing Xiao, Zheng Wang, Chia-Wen Lin, Shin'ichi Satoh
[ECCV 2020] -
Prior Guided GAN Based Semantic Inpainting
Avisek Lahiri, Arnav Kumar Jain, Sanskar Agrawal, Pabitra Mitra, Prabir Kumar Biswas
[CVPR 2020]
[★☆] 大致浏览. 分为两个阶段, 第一阶段训练从noise prior生成图像的generator, 第二阶段固定generator, 训练从待修复图像生成噪声先验的网络. 使用了人脸关键点作为额外的prior控制生成结果.
-
Towards Robust Rain Removal Against Adversarial Attacks: A Comprehensive Benchmark Analysis and Beyond
Yi Yu, Wenhan Yang, Yap-Peng Tan, Alex C. Kot
[CVPR 2022] [Pytorch-Code] -
Closing the Loop: Joint Rain Generation and Removal via Disentangled Image Translation
Yuntong Ye, Yi Chang, Hanyu Zhou, Luxin Yan
[CVPR 2021] [Pytorch-Code]
[JRGR] -
Removing Raindrops and Rain Streaks in One Go
Ruijie Quan, Xin Yu, Yuanzhi Liang, Yi Yang
[CVPR 2021]
[CCN] -
From Rain Generation to Rain Removal
Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, Deyu Meng
[CVPR 2021] [Pytorch-Code]
[VRGNet] -
Syn2Real Transfer Learning for Image Deraining using Gaussian Processes
Rajeev Yasarla, Vishwanath A. Sindagi, Vishal M. Patel
[CVPR 2020] [Pytorch-Code]
[★★] 使用高斯过程计算无标签真实数据的unsupervised loss. 从paper的实验效果来看有不错的效果, 值得一试 -
Multi-Scale Progressive Fusion Network for Single Image Deraining
Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Baojin Huang, Yimin Luo, Jiayi Ma, Junjun Jiang
[CVPR 2020] [TF-Code]
[MSPFN] -
Detail-recovery Image Deraining via Context Aggregation Networks
Sen Deng, Mingqiang Wei, Jun Wang, Yidan Feng, Luming Liang, Haoran Xie, Fu Lee Wang, Meng Wang
[CVPR 2020] [TF-Code]
[DRD-Net] -
Density-aware Single Image De-raining using a Multi-stream Dense Network
He Zhang, Vishal M. Patel
[CVPR 2018] [Pytorch-Code]
[DID-MDN] [★☆] 基于dense connection的双分支去雨网络, 一个分支预测一个雨稠密程度的类别标签(大中小), 一个采用残差预测结构, 并结合稠密程度label, 预测去雨图像, 经过一个refinement网络输出. 加入一个预测程度的分支的策略, 在图像增强恢复任务中还是比较值得尝试的.
-
Image Demoireing with Learnable Bandpass Filters
Bolun Zheng, Shanxin Yuan, Gregory Slabaugh, Ales Leonardis
[CVPR 2020] [TF-Code]
[★] 在DCT变换后的频谱域做摩尔纹提取, 分为3个scale提取不同尺度的摩尔纹. 对带通去取摩尔纹的推导部分没看懂. -
Joint Demosaicing and Denoising With Self Guidance
Lin Liu, Xu Jia, Jianzhuang Liu, Qi Tian
[CVPR 2020] [Pytorch-Code]
[JDD] -
Wavelet-Based Dual-Branch Networkfor Image Demoireing
[Author]Lin Liu, Jianzhuang Liu, Shanxin Yuan, Gregory Slabaugh, Ales Leonardis, Wengang Zhou, Qi Tian
[ECCV 2020] [Project] -
FHDe²Net: Full High Definition Demoireing Network
Bin He, Ce Wang, Boxin Shi, Ling-Yu Duan
[ECCV 2020] [Project] -
Self-Adaptively Learning to Demoiré from Focused and Defocused Image Pairs
Lin Liu, Shanxin Yuan, Jianzhuang Liu, Liping Bao, Gregory Slabaugh, Qi Tian
[NeurIPS 2020] [Project]
-
Fast Blind Decontouring Network
Yang Zhao, Wei Jia, Yuan Chen, Ronggang Wang
[TCSVT 2022]
[★] 预测smooth区域mask, 再对平滑区域做debanding. 训练数据生成使用ALD方法检测gt的平滑区域作为mask真值, 对平滑区域做banding退化. mask预测网络的loss使用了最小化梯度以及mask约束. -
Deep Image Debanding
Raymond Zhou, Shahrukh Athar, Zhongling Wang, Zhou Wang
[arXiv 2110]
[☆] -
Deep Reconstruction of Least Significant Bits for Bit-Depth Expansion
Yang Zhao, Ronggang Wang, Wei Jia, Wangmeng Zuo, Xiaoping Liu, Wen Gao
[TIP 2019]
[★] 低bit位图像恢复到高bit位图像, 主要处理banding问题
- Real-Time False-Contours Removal for Inverse Tone Mapped HDR Content
Gonzalo Luzardo, Jan Aelterman, Hiep Luong, Wilfried Philips, Daniel Ochoa
[MM 2017]
[★] Signal processing based.