forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
viewportarray.cpp
328 lines (264 loc) · 11.8 KB
/
viewportarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/*
* Vulkan Example - Viewport array with single pass rendering using geometry shaders
*
* Copyright (C) 2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
vkglTF::Model scene;
struct UBOGS {
glm::mat4 projection[2];
glm::mat4 modelview[2];
glm::vec4 lightPos = glm::vec4(-2.5f, -3.5f, 0.0f, 1.0f);
} uboGS;
vks::Buffer uniformBufferGS;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Camera and view properties
float eyeSeparation = 0.08f;
const float focalLength = 0.5f;
const float fov = 90.0f;
const float zNear = 0.1f;
const float zFar = 256.0f;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Viewport arrays";
camera.type = Camera::CameraType::firstperson;
camera.setRotation(glm::vec3(0.0f, 90.0f, 0.0f));
camera.setTranslation(glm::vec3(7.0f, 3.2f, 0.0f));
camera.setMovementSpeed(5.0f);
settings.overlay = true;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBufferGS.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Geometry shader support is required for this example
if (deviceFeatures.geometryShader) {
enabledFeatures.geometryShader = VK_TRUE;
}
else {
vks::tools::exitFatal("Selected GPU does not support geometry shaders!", VK_ERROR_FEATURE_NOT_PRESENT);
}
// Multiple viewports must be supported
if (deviceFeatures.multiViewport) {
enabledFeatures.multiViewport = VK_TRUE;
}
else {
vks::tools::exitFatal("Selected GPU does not support multi viewports!", VK_ERROR_FEATURE_NOT_PRESENT);
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewports[2];
// Left
viewports[0] = { 0, 0, (float)width / 2.0f, (float)height, 0.0, 1.0f };
// Right
viewports[1] = { (float)width / 2.0f, 0, (float)width / 2.0f, (float)height, 0.0, 1.0f };
vkCmdSetViewport(drawCmdBuffers[i], 0, 2, viewports);
VkRect2D scissorRects[2] = {
vks::initializers::rect2D(width/2, height, 0, 0),
vks::initializers::rect2D(width/2, height, width / 2, 0),
};
vkCmdSetScissor(drawCmdBuffers[i], 0, 2, scissorRects);
vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
scene.draw(drawCmdBuffers[i]);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
scene.loadFromFile(getAssetPath() + "models/sampleroom.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY);
}
void setupDescriptorPool()
{
// Example uses two ubos
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(static_cast<uint32_t>(poolSizes.size()), poolSizes.data(), 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_GEOMETRY_BIT, 0) // Binding 1: Geometry shader ubo
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferGS.descriptor), // Binding 0 :Geometry shader ubo
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
// We use two viewports
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(2, 2, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 3> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.renderPass = renderPass;
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Color});
shaderStages[0] = loadShader(getShadersPath() + "viewportarray/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "viewportarray/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// A geometry shader is used to output geometry to multiple viewports in one single pass
// See the "invocations" decorator of the layout input in the shader
shaderStages[2] = loadShader(getShadersPath() + "viewportarray/multiview.geom.spv", VK_SHADER_STAGE_GEOMETRY_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Geometry shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferGS,
sizeof(uboGS)));
// Map persistent
VK_CHECK_RESULT(uniformBufferGS.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Geometry shader matrices for the two viewports
// See http://paulbourke.net/stereographics/stereorender/
// Calculate some variables
float aspectRatio = (float)(width * 0.5f) / (float)height;
float wd2 = zNear * tan(glm::radians(fov / 2.0f));
float ndfl = zNear / focalLength;
float left, right;
float top = wd2;
float bottom = -wd2;
glm::vec3 camFront;
camFront.x = -cos(glm::radians(camera.rotation.x)) * sin(glm::radians(camera.rotation.y));
camFront.y = sin(glm::radians(camera.rotation.x));
camFront.z = cos(glm::radians(camera.rotation.x)) * cos(glm::radians(camera.rotation.y));
camFront = glm::normalize(camFront);
glm::vec3 camRight = glm::normalize(glm::cross(camFront, glm::vec3(0.0f, 1.0f, 0.0f)));
glm::mat4 rotM = glm::mat4(1.0f);
glm::mat4 transM;
rotM = glm::rotate(rotM, glm::radians(camera.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
rotM = glm::rotate(rotM, glm::radians(camera.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
rotM = glm::rotate(rotM, glm::radians(camera.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
// Left eye
left = -aspectRatio * wd2 + 0.5f * eyeSeparation * ndfl;
right = aspectRatio * wd2 + 0.5f * eyeSeparation * ndfl;
transM = glm::translate(glm::mat4(1.0f), camera.position - camRight * (eyeSeparation / 2.0f));
uboGS.projection[0] = glm::frustum(left, right, bottom, top, zNear, zFar);
uboGS.modelview[0] = rotM * transM;
// Right eye
left = -aspectRatio * wd2 - 0.5f * eyeSeparation * ndfl;
right = aspectRatio * wd2 - 0.5f * eyeSeparation * ndfl;
transM = glm::translate(glm::mat4(1.0f), camera.position + camRight * (eyeSeparation / 2.0f));
uboGS.projection[1] = glm::frustum(left, right, bottom, top, zNear, zFar);
uboGS.modelview[1] = rotM * transM;
memcpy(uniformBufferGS.mapped, &uboGS, sizeof(uboGS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderFloat("Eye separation", &eyeSeparation, -1.0f, 1.0f)) {
updateUniformBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()