forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
shadowmappingomni.cpp
814 lines (682 loc) · 31.6 KB
/
shadowmappingomni.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/*
* Vulkan Example - Omni directional shadows using a dynamic cube map
*
* Copyright (C) by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
// Texture properties
#define TEX_DIM 1024
#define TEX_FILTER VK_FILTER_LINEAR
// Offscreen frame buffer properties
#define FB_DIM TEX_DIM
#define FB_COLOR_FORMAT VK_FORMAT_R32_SFLOAT
class VulkanExample : public VulkanExampleBase
{
public:
bool displayCubeMap = false;
float zNear = 0.1f;
float zFar = 1024.0f;
struct {
vkglTF::Model scene;
vkglTF::Model debugcube;
} models;
struct {
vks::Buffer scene;
vks::Buffer offscreen;
} uniformBuffers;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboVSquad;
glm::vec4 lightPos = glm::vec4(0.0f, -2.5f, 0.0f, 1.0);
struct UBO {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec4 lightPos;
};
UBO uboVSscene, uboOffscreenVS;
struct {
VkPipeline scene;
VkPipeline offscreen;
VkPipeline cubemapDisplay;
} pipelines;
struct {
VkPipelineLayout scene;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet scene;
VkDescriptorSet offscreen;
} descriptorSets;
VkDescriptorSetLayout descriptorSetLayout;
vks::Texture shadowCubeMap;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct OffscreenPass {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
VkRenderPass renderPass;
VkSampler sampler;
VkDescriptorImageInfo descriptor;
} offscreenPass;
VkFormat fbDepthFormat;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Point light shadows (cubemap)";
settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(45.0f, (float)width / (float)height, zNear, zFar);
camera.setRotation(glm::vec3(-20.5f, -673.0f, 0.0f));
camera.setPosition(glm::vec3(0.0f, 0.5f, -15.0f));
timerSpeed *= 0.5f;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Cube map
vkDestroyImageView(device, shadowCubeMap.view, nullptr);
vkDestroyImage(device, shadowCubeMap.image, nullptr);
vkDestroySampler(device, shadowCubeMap.sampler, nullptr);
vkFreeMemory(device, shadowCubeMap.deviceMemory, nullptr);
// Frame buffer
// Color attachment
vkDestroyImageView(device, offscreenPass.color.view, nullptr);
vkDestroyImage(device, offscreenPass.color.image, nullptr);
vkFreeMemory(device, offscreenPass.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offscreenPass.depth.view, nullptr);
vkDestroyImage(device, offscreenPass.depth.image, nullptr);
vkFreeMemory(device, offscreenPass.depth.mem, nullptr);
vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr);
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
// Pipelines
vkDestroyPipeline(device, pipelines.scene, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.cubemapDisplay, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Uniform buffers
uniformBuffers.offscreen.destroy();
uniformBuffers.scene.destroy();
}
void prepareCubeMap()
{
shadowCubeMap.width = TEX_DIM;
shadowCubeMap.height = TEX_DIM;
// 32 bit float format for higher precision
VkFormat format = VK_FORMAT_R32_SFLOAT;
// Cube map image description
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { shadowCubeMap.width, shadowCubeMap.height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 6;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Create cube map image
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &shadowCubeMap.image));
vkGetImageMemoryRequirements(device, shadowCubeMap.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &shadowCubeMap.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, shadowCubeMap.image, shadowCubeMap.deviceMemory, 0));
// Image barrier for optimal image (target)
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 6;
vks::tools::setImageLayout(
layoutCmd,
shadowCubeMap.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = TEX_FILTER;
sampler.minFilter = TEX_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &shadowCubeMap.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6;
view.image = shadowCubeMap.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &shadowCubeMap.view));
}
// Prepare a new framebuffer for offscreen rendering
// The contents of this framebuffer are then
// copied to the different cube map faces
void prepareOffscreenFramebuffer()
{
offscreenPass.width = FB_DIM;
offscreenPass.height = FB_DIM;
VkFormat fbColorFormat = FB_COLOR_FORMAT;
// Color attachment
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = fbColorFormat;
imageCreateInfo.extent.width = offscreenPass.width;
imageCreateInfo.extent.height = offscreenPass.height;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image of the framebuffer is blit source
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = fbColorFormat;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreenPass.color.image));
vkGetImageMemoryRequirements(device, offscreenPass.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.color.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.color.image, offscreenPass.color.mem, 0));
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(
layoutCmd,
offscreenPass.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
colorImageView.image = offscreenPass.color.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreenPass.color.view));
// Depth stencil attachment
imageCreateInfo.format = fbDepthFormat;
imageCreateInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = fbDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreenPass.depth.image));
vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0));
vks::tools::setImageLayout(
layoutCmd,
offscreenPass.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
depthStencilView.image = offscreenPass.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view));
VkImageView attachments[2];
attachments[0] = offscreenPass.color.view;
attachments[1] = offscreenPass.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = offscreenPass.renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offscreenPass.width;
fbufCreateInfo.height = offscreenPass.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer));
}
// Updates a single cube map face
// Renders the scene with face's view and does a copy from framebuffer to cube face
// Uses push constants for quick update of view matrix for the current cube map face
void updateCubeFace(uint32_t faceIndex, VkCommandBuffer commandBuffer)
{
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
// Reuse render pass from example pass
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
// Update view matrix via push constant
glm::mat4 viewMatrix = glm::mat4(1.0f);
switch (faceIndex)
{
case 0: // POSITIVE_X
viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f));
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 1: // NEGATIVE_X
viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f));
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 2: // POSITIVE_Y
viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 3: // NEGATIVE_Y
viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 4: // POSITIVE_Z
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 5: // NEGATIVE_Z
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f));
break;
}
// Render scene from cube face's point of view
vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update shader push constant block
// Contains current face view matrix
vkCmdPushConstants(
commandBuffer,
pipelineLayouts.offscreen,
VK_SHADER_STAGE_VERTEX_BIT,
0,
sizeof(glm::mat4),
&viewMatrix);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
models.scene.draw(commandBuffer);
vkCmdEndRenderPass(commandBuffer);
// Make sure color writes to the framebuffer are finished before using it as transfer source
vks::tools::setImageLayout(
commandBuffer,
offscreenPass.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageSubresourceRange cubeFaceSubresourceRange = {};
cubeFaceSubresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
cubeFaceSubresourceRange.baseMipLevel = 0;
cubeFaceSubresourceRange.levelCount = 1;
cubeFaceSubresourceRange.baseArrayLayer = faceIndex;
cubeFaceSubresourceRange.layerCount = 1;
// Change image layout of one cubemap face to transfer destination
vks::tools::setImageLayout(
commandBuffer,
shadowCubeMap.image,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
cubeFaceSubresourceRange);
// Copy region for transfer from framebuffer to cube face
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = faceIndex;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = shadowCubeMap.width;
copyRegion.extent.height = shadowCubeMap.height;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
commandBuffer,
offscreenPass.color.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
shadowCubeMap.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
©Region);
// Transform framebuffer color attachment back
vks::tools::setImageLayout(
commandBuffer,
offscreenPass.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Change image layout of copied face to shader read
vks::tools::setImageLayout(
commandBuffer,
shadowCubeMap.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
cubeFaceSubresourceRange);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Generate shadow cube maps using one render pass per face
*/
{
VkViewport viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
for (uint32_t face = 0; face < 6; face++) {
updateCubeFace(face, drawCmdBuffers[i]);
}
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Scene rendering with applied shadow map
*/
{
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL);
if (displayCubeMap)
{
// Display all six sides of the shadow cube map
// Note: Visualization of the different faces is done in the fragment shader, see cubemapdisplay.frag
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.cubemapDisplay);
models.debugcube.draw(drawCmdBuffers[i]);
}
else
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene);
models.scene.draw(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
models.debugcube.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.scene.loadFromFile(getAssetPath() + "models/shadowscene_fire.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupDescriptorPool()
{
// Example uses three ubos and two image samplers
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes.size(), poolSizes.data(), 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// Shared pipeline layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader image sampler (cube map)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// 3D scene pipeline layout
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene));
// Offscreen pipeline layout
// Push constants for cube map face view matrices
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0);
// Push constant ranges are part of the pipeline layout
pPipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pPipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
}
void setupDescriptorSets()
{
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
// 3D scene
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
// Image descriptor for the cube map
VkDescriptorImageInfo texDescriptor =
vks::initializers::descriptorImageInfo(
shadowCubeMap.sampler,
shadowCubeMap.view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
std::vector<VkWriteDescriptorSet> sceneDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor),
// Binding 1 : Fragment shader shadow sampler
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor)
};
vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL);
// Offscreen
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen));
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.offscreen.descriptor),
};
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
}
// Set up a separate render pass for the offscreen frame buffer
// This is necessary as the offscreen frame buffer attachments
// use formats different to the ones from the visible frame buffer
// and at least the depth one may not be compatible
void prepareOffscreenRenderpass()
{
VkAttachmentDescription osAttachments[2] = {};
// Find a suitable depth format
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat);
assert(validDepthFormat);
osAttachments[0].format = FB_COLOR_FORMAT;
osAttachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
osAttachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
osAttachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
osAttachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
osAttachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
osAttachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
osAttachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// Depth attachment
osAttachments[1].format = fbDepthFormat;
osAttachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
osAttachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
osAttachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
osAttachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
osAttachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
osAttachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
osAttachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 1;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorReference;
subpass.pDepthStencilAttachment = &depthReference;
VkRenderPassCreateInfo renderPassCreateInfo = vks::initializers::renderPassCreateInfo();
renderPassCreateInfo.attachmentCount = 2;
renderPassCreateInfo.pAttachments = osAttachments;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offscreenPass.renderPass));
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
// 3D scene pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.scene, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal});
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.scene));
// Offscreen pipeline
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
pipelineCI.layout = pipelineLayouts.offscreen;
pipelineCI.renderPass = offscreenPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.offscreen));
// Cube map display pipeline
shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/cubemapdisplay.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/cubemapdisplay.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCI.pVertexInputState = &emptyInputState;
pipelineCI.layout = pipelineLayouts.scene;
pipelineCI.renderPass = renderPass;
rasterizationState.cullMode = VK_CULL_MODE_NONE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.cubemapDisplay));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Offscreen vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.offscreen,
sizeof(uboOffscreenVS)));
// Scene vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.scene,
sizeof(uboVSscene)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.offscreen.map());
VK_CHECK_RESULT(uniformBuffers.scene.map());
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVSscene.projection = camera.matrices.perspective;
uboVSscene.view = camera.matrices.view;
uboVSscene.model = glm::mat4(1.0f);
uboVSscene.lightPos = lightPos;
memcpy(uniformBuffers.scene.mapped, &uboVSscene, sizeof(uboVSscene));
}
void updateUniformBufferOffscreen()
{
lightPos.x = sin(glm::radians(timer * 360.0f)) * 0.15f;
lightPos.z = cos(glm::radians(timer * 360.0f)) * 0.15f;
uboOffscreenVS.projection = glm::perspective((float)(M_PI / 2.0), 1.0f, zNear, zFar);
uboOffscreenVS.view = glm::mat4(1.0f);
uboOffscreenVS.model = glm::translate(glm::mat4(1.0f), glm::vec3(-lightPos.x, -lightPos.y, -lightPos.z));
uboOffscreenVS.lightPos = lightPos;
memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
prepareCubeMap();
setupDescriptorSetLayout();
prepareOffscreenRenderpass();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
prepareOffscreenFramebuffer();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated)
{
updateUniformBufferOffscreen();
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Display shadow cube render target", &displayCubeMap)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()