forked from wangsssky/MedicalMatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
196 lines (159 loc) · 7.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
from torch.optim.lr_scheduler import _LRScheduler
from tensorboardX import SummaryWriter
import os
import argparse
import datetime
import numpy as np
from tqdm import tqdm
import shutil
from config import *
from dataloader.data_spliter import AlphaDatasetSpliter
from dataloader.transform import elastic_transform
from model.medical_matting import MedicalMatting, ModelWithLoss
from evaluate import evaluate
from utils.logger import Logger
from utils.utils import rand_seed
from dataloader.utils import data_preprocess
class WarmUpLR(_LRScheduler):
"""warmup_training learning rate scheduler
Args:
optimizer: optimzier(e.g. SGD)
total_iters: totoal_iters of warmup phase
"""
def __init__(self, optimizer, total_iters, last_epoch=-1):
self.total_iters = total_iters
super().__init__(optimizer, last_epoch)
def get_lr(self):
"""we will use the first m batches, and set the learning
rate to base_lr * m / total_iters
"""
return [base_lr * self.last_epoch / (self.total_iters + 1e-8) for base_lr in self.base_lrs]
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config path (*.yaml)", required=True)
parser.add_argument("--save_path", type=str, help="save path", default='')
args = parser.parse_args()
opt = Config(config_path=args.config)
rand_seed(opt.RANDOM_SEED)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# log & model folder
if args.save_path == '':
opt.MODEL_DIR += '_{}_{}'.format(opt.DATASET, datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
else:
opt.MODEL_DIR = args.save_path
if not os.path.exists(opt.MODEL_DIR):
os.mkdir(opt.MODEL_DIR)
logger = Logger(opt.MODEL_NAME, path=opt.MODEL_DIR)
writer = SummaryWriter(opt.MODEL_DIR)
if not os.path.exists(os.path.join(opt.MODEL_DIR, 'params.yaml')):
shutil.copy(args.config, os.path.join(opt.MODEL_DIR, 'params.yaml'))
# dataset
data_spliter = AlphaDatasetSpliter(opt=opt, input_size=opt.INPUT_SIZE)
for fold_idx in range(opt.KFOLD):
print('### {} of {} FOLD ###'.format(fold_idx + 1, opt.KFOLD))
train_loader, test_loader = data_spliter.get_datasets(fold_idx=fold_idx)
rand_seed(opt.RANDOM_SEED)
# Training Config
epochs = opt.EPOCH_NUM
epoch_start = 0
net = MedicalMatting(
input_channels=opt.INPUT_CHANNEL, num_classes=1, num_filters=opt.NUM_FILTERS,
latent_dim=opt.LATENT_DIM, num_convs_fcomb=4, batch_norm=opt.USE_BN,
use_matting=opt.USE_MATTING, use_uncertainty_map=opt.UNCERTAINTY_MAP,
num_sampling=opt.SAMPLING_NUM
)
net = ModelWithLoss(net, kl_scale=opt.KL_SCALE, reconstruction_scale=opt.RECONSTRUCTION_SCALE,
alpha_scale=opt.ALPHA_SCALE, alpha_gradient_scale=opt.ALPHA_GRADIENT_SCALE,
loss_strategy=opt.LOSS_STRATEGY)
if opt.OPTIMIZER == 'ADAM':
optimizer = torch.optim.Adam(
net.parameters(), lr=opt.LEARNING_RATE, weight_decay=opt.WEIGHT_DECAY)
else:
optimizer = torch.optim.SGD(
net.parameters(), lr=opt.LEARNING_RATE, momentum=opt.MOMENTUM, weight_decay=opt.WEIGHT_DECAY,
nesterov=True)
warmup_scheduler = WarmUpLR(optimizer, len(train_loader) * opt.WARM_LEN)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)
# Resume
if opt.RESUME_FROM > 0:
ckpt = torch.load(
os.path.join(opt.MODEL_DIR,
'{}_{}_{}_{}.pth'.format(opt.MODEL_NAME, opt.DATASET, fold_idx, opt.RESUME_FROM)))
net.load_state_dict(ckpt['model'])
if 'optimizer' in ckpt.keys():
optimizer.load_state_dict(ckpt['optimizer'])
if 'scheduler' in ckpt.keys():
scheduler.load_state_dict(ckpt['scheduler'])
epoch_start = opt.RESUME_FROM
net.to(device)
# Training
for epoch in range(epoch_start, epochs):
net.train()
print_str = '-------epoch {}/{}-------'.format(epoch+1, epochs)
logger.write_and_print(print_str)
for step, (patch, masks, alpha, _) in enumerate(tqdm(train_loader)):
if alpha is None:
continue
patch, mask, alpha = data_preprocess(
patch, masks, alpha, opt, elastic_transform=elastic_transform, training=True)
patch = patch.to(device)
mask = mask.to(device)
alpha = alpha.to(device)
# prepare data
batches_done = len(train_loader) * epoch + step
optimizer.zero_grad()
loss, outputs = net.forward(
patch, mask, alpha, train_matting=epoch >= opt.TRAIN_MATTING_START_FROM,
epoch=epoch)
if torch.isnan(loss):
logger.write_and_print('***** Warning: loss is NaN *****')
loss = torch.tensor(10000).to(device)
# print loss
print_str = '\n-----------loss-----------\n# total loss: {}'.format(loss.item())
loss_names = ['kl', 'reconstruction', 'alpha', 'alpha_gradient']
for name in loss_names:
if name not in outputs.keys():
continue
print_str += '\t' + name + ': {:.4f}'.format(outputs[name])
print_str += '\n'
if net.model.use_matting:
if net.loss_strategy == 'uncertain':
for var_id in range(net.task_num):
print_str += '\tlog_var{}: {:.4f}'.format(var_id, net.log_vars[var_id].item())
if opt.PRT_LOSS:
logger.write_and_print(print_str)
else:
logger.write(print_str)
loss.backward()
optimizer.step()
writer.add_scalars('Loss', {'train fold_idx-{}'.format(fold_idx): loss.item()}, batches_done)
if epoch <= opt.WARM_LEN:
warmup_scheduler.step()
# print('lr', optimizer.param_groups[0]['lr'])
# log learning_rate
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalars('learning_rate', {'fold_idx-{}'.format(fold_idx): current_lr}, epoch)
scheduler.step()
# save model
ckpt = {'model': net.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()
}
torch.save(ckpt, os.path.join(opt.MODEL_DIR,
'{}_{}_{}_{}.pth'.format(opt.MODEL_NAME, opt.DATASET, fold_idx, epoch + 1)))
# evaluate each epoch
metrics_dict = evaluate(net.model, test_loader, device, opt)
print_str = ''
for key in metrics_dict.keys():
print_str += key + ': {:.4f} '.format(metrics_dict[key])
writer.add_scalars(key, {'fold_idx-{}'.format(fold_idx): metrics_dict[key]}, epoch)
logger.write_and_print(print_str)
# evaluate each fold
evaluate(net.model, test_loader, device, opt)
ckpt = {'model': net.state_dict()}
torch.save(ckpt, os.path.join(opt.MODEL_DIR,
'{}_{}_{}_{}.pth'.format(opt.MODEL_NAME, opt.DATASET, fold_idx, epochs)))
if __name__ == '__main__':
torch.autograd.set_detect_anomaly(True)
main()