-
Notifications
You must be signed in to change notification settings - Fork 85
/
inference.py
66 lines (58 loc) · 2.8 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import tensorflow as tf
class siamese:
# Create model
def __init__(self):
self.x1 = tf.placeholder(tf.float32, [None, 784])
self.x2 = tf.placeholder(tf.float32, [None, 784])
with tf.variable_scope("siamese") as scope:
self.o1 = self.network(self.x1)
scope.reuse_variables()
self.o2 = self.network(self.x2)
# Create loss
self.y_ = tf.placeholder(tf.float32, [None])
self.loss = self.loss_with_spring()
def network(self, x):
weights = []
fc1 = self.fc_layer(x, 1024, "fc1")
ac1 = tf.nn.relu(fc1)
fc2 = self.fc_layer(ac1, 1024, "fc2")
ac2 = tf.nn.relu(fc2)
fc3 = self.fc_layer(ac2, 2, "fc3")
return fc3
def fc_layer(self, bottom, n_weight, name):
assert len(bottom.get_shape()) == 2
n_prev_weight = bottom.get_shape()[1]
initer = tf.truncated_normal_initializer(stddev=0.01)
W = tf.get_variable(name+'W', dtype=tf.float32, shape=[n_prev_weight, n_weight], initializer=initer)
b = tf.get_variable(name+'b', dtype=tf.float32, initializer=tf.constant(0.01, shape=[n_weight], dtype=tf.float32))
fc = tf.nn.bias_add(tf.matmul(bottom, W), b)
return fc
def loss_with_spring(self):
margin = 5.0
labels_t = self.y_
labels_f = tf.subtract(1.0, self.y_, name="1-yi") # labels_ = !labels;
eucd2 = tf.pow(tf.subtract(self.o1, self.o2), 2)
eucd2 = tf.reduce_sum(eucd2, 1)
eucd = tf.sqrt(eucd2+1e-6, name="eucd")
C = tf.constant(margin, name="C")
# yi*||CNN(p1i)-CNN(p2i)||^2 + (1-yi)*max(0, C-||CNN(p1i)-CNN(p2i)||^2)
pos = tf.multiply(labels_t, eucd2, name="yi_x_eucd2")
# neg = tf.multiply(labels_f, tf.subtract(0.0,eucd2), name="yi_x_eucd2")
# neg = tf.multiply(labels_f, tf.maximum(0.0, tf.subtract(C,eucd2)), name="Nyi_x_C-eucd_xx_2")
neg = tf.multiply(labels_f, tf.pow(tf.maximum(tf.subtract(C, eucd), 0), 2), name="Nyi_x_C-eucd_xx_2")
losses = tf.add(pos, neg, name="losses")
loss = tf.reduce_mean(losses, name="loss")
return loss
def loss_with_step(self):
margin = 5.0
labels_t = self.y_
labels_f = tf.subtract(1.0, self.y_, name="1-yi") # labels_ = !labels;
eucd2 = tf.pow(tf.subtract(self.o1, self.o2), 2)
eucd2 = tf.reduce_sum(eucd2, 1)
eucd = tf.sqrt(eucd2+1e-6, name="eucd")
C = tf.constant(margin, name="C")
pos = tf.multiply(labels_t, eucd, name="y_x_eucd")
neg = tf.multiply(labels_f, tf.maximum(0.0, tf.subtract(C, eucd)), name="Ny_C-eucd")
losses = tf.add(pos, neg, name="losses")
loss = tf.reduce_mean(losses, name="loss")
return loss