forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
optimization.py
138 lines (122 loc) · 4.99 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import logging
import re
from paddle.fluid import framework
from paddle.fluid.framework import Variable, default_main_program
import numpy as np
import paddle as P
import paddle.distributed.fleet as fleet
import sys
sys.path.append("../")
from propeller.paddle.train.hooks import RunHook
import paddle.fluid as F
log = logging.getLogger(__name__)
from utils import create_if_not_exists, get_warmup_and_linear_decay
class AdamW(P.optimizer.AdamW):
"""AdamW object for dygraph"""
def __init__(self, *args, **kwargs):
layerwise_lr_decay = kwargs.pop('layerwise_lr_decay_rate', 0.8)
n_layers = kwargs.pop('n_layers', 12)
var_name_to_exclude = kwargs.pop('var_name_to_exclude', '.*layer_norm_scale|.*layer_norm_bias|.*b_0')
super(AdamW, self).__init__(*args, **kwargs)
self.ld = layerwise_lr_decay
self.pat = re.compile(var_name_to_exclude)
self.n_layers = n_layers
def _get_layerwise_lr_decay_rate(self, param):
#if self.pat.match(param.name):
# return 1.0
if param.name.startswith("encoder_layer"):
layer = int(param.name.split("_")[2])
decay_rate = self.ld ** (self.n_layers - layer)
elif "embedding" in param.name:
decay_rate = self.ld ** (self.n_layers + 1)
else:
decay_rate = 1.0
return decay_rate
def _create_param_lr(self, param_and_grad):
# create learning rate tensor for every parameter
param = param_and_grad[0]
param_lr = param.optimize_attr['learning_rate'] * self._get_layerwise_lr_decay_rate(param)
if type(param_lr) == Variable:
return param_lr
else:
if param_lr == 1.0:
return self._global_learning_rate()
else:
with default_main_program()._lr_schedule_guard(
is_with_opt=True), framework.name_scope(
'scale_with_param_lr'):
return self._global_learning_rate() * param_lr
def apply_optimize(self, loss, startup_program, params_grads):
super(AdamW, self).apply_optimize(loss, startup_program, params_grads)
for p, g in params_grads:
#log.debug(L.reduce_mean(p))
if not self.pat.match(p.name):
L.assign(p * (1. - self.wd * self.current_step_lr()), p)
def optimization(
loss,
warmup_steps,
num_train_steps,
learning_rate,
train_program,
startup_prog,
weight_decay,
scheduler='linear_warmup_decay',
use_fp16=False, ):
"""do backword for static"""
def exclude_from_weight_decay(param):
name = param.rstrip('.master')
if name.find("layer_norm") > -1:
return True
bias_suffix = ["_bias", "_b", ".b_0"]
for suffix in bias_suffix:
if name.endswith(suffix):
return True
return False
g_clip = P.nn.ClipGradByGlobalNorm(1.0)
lr_scheduler = P.optimizer.lr.LambdaDecay(
learning_rate,
get_warmup_and_linear_decay(num_train_steps, warmup_steps))
optimizer = AdamW(
learning_rate=lr_scheduler,
weight_decay=weight_decay,
grad_clip=g_clip,
apply_decay_param_fun=exclude_from_weight_decay)
if use_fp16:
log.info('AMP activated')
if weight_decay > 0.:
raise ValueError(
'paddle amp will ignore `weight_decay`, see https://github.com/PaddlePaddle/Paddle/issues/29794'
)
#amp_list = P.fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
# custom_white_list=['softmax', 'layer_norm', 'gelu'])
optimizer = P.fluid.contrib.mixed_precision.decorate(
optimizer, init_loss_scaling=2**15, use_dynamic_loss_scaling=True)
_, param_grads = optimizer.minimize(loss)
loss_scaling = P.static.default_main_program().global_block().var(
'loss_scaling_0')
else:
_, param_grads = optimizer.minimize(loss)
loss_scaling = None
class LRStepHook(RunHook):
def after_run(self, _, __):
lr_scheduler.step()
log.debug('lr step: %.5f' % lr_scheduler.get_lr())
return LRStepHook(), loss_scaling