forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune_classifier_static.py
251 lines (215 loc) · 9.32 KB
/
finetune_classifier_static.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import os
import re
import time
import logging
from random import random
import json
from functools import reduce, partial
import numpy as np
import multiprocessing
import tempfile
import re
import paddle as P
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from demo.optimization import optimization
#import utils.data
from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)
def model_fn(features, mode, params, run_config):
ernie = ErnieModelForSequenceClassification(params, name='')
if mode is not propeller.RunMode.TRAIN:
ernie.eval()
else:
ernie.train()
metrics, loss = None, None
if mode is propeller.RunMode.PREDICT:
src_ids, sent_ids = features
_, logits = ernie(src_ids, sent_ids)
predictions = [logits, ]
else:
src_ids, sent_ids, labels = features
if mode is propeller.RunMode.EVAL:
loss, logits = ernie(src_ids, sent_ids, labels=labels)
pred = logits.argmax(axis=1)
acc = propeller.metrics.Acc(labels, pred)
metrics = {'acc': acc}
predictions = [pred]
train_hooks = None
else:
loss, logits = ernie(src_ids, sent_ids, labels=labels)
lr_step_hook, loss_scale_coef = optimization(
loss=loss,
warmup_steps=int(run_config.max_steps *
params['warmup_proportion']),
num_train_steps=run_config.max_steps,
learning_rate=params['learning_rate'],
train_program=P.static.default_main_program(),
startup_prog=P.static.default_startup_program(),
use_fp16=args.use_amp,
weight_decay=params['weight_decay'],
scheduler="linear_warmup_decay", )
scheduled_lr = P.static.default_main_program().global_block().var(
'learning_rate_0')
propeller.summary.scalar('lr', scheduled_lr)
predictions = [logits, ]
train_hooks = [lr_step_hook]
return propeller.ModelSpec(
loss=loss,
mode=mode,
metrics=metrics,
predictions=predictions,
train_hooks=train_hooks)
if __name__ == '__main__':
parser = propeller.ArgumentParser('DAN model with Paddle')
parser.add_argument('--do_predict', action='store_true')
parser.add_argument('--max_seqlen', type=int, default=128)
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--from_pretrained', type=str, required=True)
parser.add_argument('--warm_start_from', type=str)
parser.add_argument('--epoch', type=int, default=3)
parser.add_argument('--use_amp', action='store_true')
args = parser.parse_args()
P.enable_static()
if not os.path.exists(args.from_pretrained):
raise ValueError('--from_pretrained not found: %s' %
args.from_pretrained)
cfg_file_path = os.path.join(args.from_pretrained, 'ernie_config.json')
param_path = os.path.join(args.from_pretrained, 'params')
vocab_path = os.path.join(args.from_pretrained, 'vocab.txt')
assert os.path.exists(cfg_file_path) and os.path.exists(
param_path) and os.path.exists(vocab_path)
hparams_cli = propeller.parse_hparam(args)
hparams_config_file = json.loads(open(cfg_file_path).read())
default_hparams = propeller.HParams(
batch_size=32,
num_labels=3,
warmup_proportion=0.1,
learning_rate=5e-5,
weight_decay=0.01,
use_task_id=False,
use_fp16=args.use_amp)
hparams = default_hparams.join(propeller.HParams(
**hparams_config_file)).join(hparams_cli)
default_run_config = dict(
max_steps=args.epoch * 390000 / hparams.batch_size,
save_steps=1000,
log_steps=10,
max_ckpt=1,
skip_steps=0,
model_dir=tempfile.mkdtemp(),
eval_steps=100)
run_config = dict(default_run_config, **json.loads(args.run_config))
run_config = propeller.RunConfig(**run_config)
tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
#tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)
unk_id = tokenizer.vocab['[UNK]']
shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1])
types = ('int64', 'int64', 'int64')
if not args.do_predict:
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn(
'title',
unk_id=unk_id,
vocab_dict=tokenizer.vocab,
tokenizer=tokenizer.tokenize),
propeller.data.TextColumn(
'comment',
unk_id=unk_id,
vocab_dict=tokenizer.vocab,
tokenizer=tokenizer.tokenize),
propeller.data.LabelColumn(
'label',
vocab_dict={
b"contradictory": 0,
b"contradiction": 0,
b"entailment": 1,
b"neutral": 2,
}),
])
def map_fn(seg_a, seg_b, label):
seg_a, seg_b = tokenizer.truncate(
seg_a, seg_b, seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
#label = np.expand_dims(label, -1) #
return sentence, segments, label
train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=True, use_gz=False) \
.map(map_fn) \
.padded_batch(hparams.batch_size)
dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(hparams.batch_size)
test_ds = feature_column.build_dataset('test', data_dir=os.path.join(args.data_dir, 'test'), shuffle=False, repeat=False, use_gz=False) \
.map(map_fn) \
.padded_batch(hparams.batch_size) \
train_ds.data_shapes = shapes
train_ds.data_types = types
dev_ds.data_shapes = shapes
dev_ds.data_types = types
test_ds.data_shapes = shapes
test_ds.data_types = types
varname_to_warmstart = re.compile(
r'^encoder.*[wb]_0$|^.*embedding$|^.*bias$|^.*scale$|^pooled_fc.[wb]_0$'
)
ws = propeller.WarmStartSetting(
predicate_fn=lambda v: varname_to_warmstart.match(v.name) and os.path.exists(os.path.join(param_path, v.name)),
from_dir=param_path,
)
best_exporter = propeller.train.exporter.BestExporter(
os.path.join(run_config.model_dir, 'best'),
cmp_fn=lambda old, new: new['dev']['acc'] > old['dev']['acc'])
propeller.train.train_and_eval(
model_class_or_model_fn=model_fn,
params=hparams,
run_config=run_config,
train_dataset=train_ds,
eval_dataset={'dev': dev_ds,
'test': test_ds},
warm_start_setting=ws,
exporters=[best_exporter])
print('dev_acc3\t%.5f\ntest_acc3\t%.5f' %
(best_exporter._best['dev']['acc'],
best_exporter._best['test']['acc']))
else:
feature_column = propeller.data.FeatureColumns([
propeller.data.TextColumn(
'title',
unk_id=unk_id,
vocab_dict=tokenizer.vocab,
tokenizer=tokenizer.tokenize),
propeller.data.TextColumn(
'comment',
unk_id=unk_id,
vocab_dict=tokenizer.vocab,
tokenizer=tokenizer.tokenize),
])
def map_fn(seg_a, seg_b):
seg_a, seg_b = tokenizer.truncate(
seg_a, seg_b, seqlen=args.max_seqlen)
sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
return sentence, segments
predict_ds = feature_column.build_dataset_from_stdin('predict') \
.map(map_fn) \
.padded_batch(hparams.batch_size) \
predict_ds.data_shapes = shapes[:-1]
predict_ds.data_types = types[:-1]
est = propeller.Learner(model_fn, run_config, hparams)
for res, in est.predict(predict_ds, ckpt=-1):
print('%d\t%.5f\t%.5f\t%.5f' %
(np.argmax(res), res[0], res[1], res[2]))