Skip to content

Latest commit

 

History

History
 
 

examples

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Examples

We provide some running examples. We will update the examples if we achieve better results on large games such as Dou Dizhu, UNO and Mahjong.

  • blackjack_dqn.py: train DQN on Blackjack.
  • blackjack_dqn_multi_process.py: train DQN on Blackjack with multiple processes.
  • blackjack_random.py: run random agents on Blackjcak.
  • doudizhu_dqn.py: train DQN on Dou Dizhu.
  • doudizhu_nfsp.py: train NFSP on Dou Dizhu.
  • doudizhu_random.py: run random agents on Dou Dizhu.
  • doudizhu_random_multi_process.py: run random agents on Dou Dizhu with multiple processes.
  • doudizhu_random_process_pool.py:run random agents on Dou Dizhu with multiple processes using process pool.
  • leduc_holdem_cfr.py: train CFR on Leduc Hold'em.
  • leduc_holdem_dqn.py: train DQN on Leduc Hold'em.
  • leduc_holdem_dqn_pytorch.py: train DQN on Leduc Hold'em (pytorch implementation).
  • leduc_holdem_human.py: play against re-trained model on Leduc Hold'em.
  • leduc_holdem_nfsp.py: train NFSP on Leduc Hold'em.
  • leduc_holdem_nfsp_load_model.py: an example of loading pre-trained Leduc Hold'em model.
  • leduc_holdem_nfsp_load_model_2.py: another example of loading pre-trained Leduc Hold'em model with model zoo.
  • leduc_holdem_nfsp_pytorch.py: train NFSP on Leduc Hold'em (pytorch implementation).
  • leduc_holdem_nfsp_pytorch_load_model.py: an example of loading pre-trained Leduc Hold'em model (Pytorch).
  • leduc_holdem_nfsp_pytorch_load_model_2.py: another example of loading pre-trained Leduc Hold'em model with model zoo (Pytorch).
  • leduc_holdem_random.py: run random agents on Leduc Hold'em.
  • leduc_holdem_single.py: train DQN on Leduc Hold'em as single-agent environment.
  • limit_holdem_dqn.py: train DQN on Limit Texas Hold'em.
  • limit_holdem_nfsp.py: train NFSP on Limit Texas Hold'em.
  • limit_holdem_random.py: run random agents on Limit Texas Hold'em.
  • mahjong_dqn.py: train DQN on Mahjong.
  • mahjong_nfsp.py: train NFSP on Mahjong.
  • mahjong_random.py: run random agents on Mahjong.
  • nolimit_holdem_dqn.py: train DQN on No-Limit Texas Hold'em.
  • nolimit_holdem_nfsp.py: train NFSP on No-Limit Texas Hold'em.
  • nolimit_holdem_random.py: run random agents on No-Limit Gexas Hold'em.
  • simple_doudizhu_random.py: run random agents on Simple Dou Dizhu.
  • uno_dqn.py: train DQN on UNO.
  • uno_human.py: play against rule-based model on UNO.
  • uno_nfsp.py: train NFSP on UNO.
  • uno_random.py: run random agents on UNO.
  • uno_single.py: train DQN on UNO as single-agent environment.
  • Pretrained models: we put pre-trained models in /models. Refer to rlcard/models/pretrained_models.py