-
Notifications
You must be signed in to change notification settings - Fork 12
/
train.py
165 lines (135 loc) · 8.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import print_function
import argparse
from datetime import datetime
from random import shuffle
import os
import sys
import time
import math
import tensorflow as tf
import numpy as np
from utils import *
from train_image_reader import *
from net import *
parser = argparse.ArgumentParser(description='')
parser.add_argument("--snapshot_dir", default='./snapshots', help="path of snapshots")
parser.add_argument("--image_size", type=int, default=256, help="load image size")
parser.add_argument("--x_data_txt_path", default='./datasets/x_traindata.txt', help="txt of x images")
parser.add_argument("--y_data_txt_path", default='./datasets/y_traindata.txt', help="txt of y images")
parser.add_argument("--random_seed", type=int, default=1234, help="random seed")
parser.add_argument('--base_lr', type=float, default=0.0002, help='initial learning rate for adam')
parser.add_argument('--epoch', dest='epoch', type=int, default=50, help='# of epoch')
parser.add_argument('--epoch_step', dest='epoch_step', type=int, default=20, help='# of epoch to decay lr')
parser.add_argument("--lamda", type=float, default=10.0, help="L1 lamda")
parser.add_argument('--beta1', dest='beta1', type=float, default=0.5, help='momentum term of adam')
parser.add_argument("--summary_pred_every", type=int, default=200, help="times to summary.")
parser.add_argument("--save_pred_every", type=int, default=8000, help="times to save.")
parser.add_argument("--x_image_forpath", default='./datasets/train/X/images/', help="forpath of x training datas.")
parser.add_argument("--x_label_forpath", default='./datasets/train/X/labels/', help="forpath of x training labels.")
parser.add_argument("--y_image_forpath", default='./datasets/train/Y/images/', help="forpath of y training datas.")
parser.add_argument("--y_label_forpath", default='./datasets/train/Y/labels/', help="forpath of y training labels.")
args = parser.parse_args()
def save(saver, sess, logdir, step):
model_name = 'model'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def get_data_lists(data_path):
f = open(data_path, 'r')
datas=[]
for line in f:
data = line.strip("\n")
datas.append(data)
return datas
def l1_loss(src, dst):
return tf.reduce_mean(tf.abs(src - dst))
def gan_loss(src, dst):
return tf.reduce_mean((src-dst)**2)
def main():
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
x_datalists = get_data_lists(args.x_data_txt_path) # a list of x images
y_datalists = get_data_lists(args.y_data_txt_path) # a list of y images
tf.set_random_seed(args.random_seed)
x_img = tf.placeholder(tf.float32,shape=[1, args.image_size, args.image_size,3],name='x_img')
x_label = tf.placeholder(tf.float32,shape=[1, args.image_size, args.image_size,3],name='x_label')
y_img = tf.placeholder(tf.float32,shape=[1, args.image_size, args.image_size,3],name='y_img')
y_label = tf.placeholder(tf.float32,shape=[1, args.image_size, args.image_size,3],name='y_label')
fake_y = generator(image=x_img, reuse=False, name='generator_x2y') # G
fake_x_ = generator(image=fake_y, reuse=False, name='generator_y2x') # S
fake_x = generator(image=y_img, reuse=True, name='generator_y2x') # G'
fake_y_ = generator(image=fake_x, reuse=True, name='generator_x2y') # S'
dy_fake = discriminator(image=fake_y, gen_label = x_label, reuse=False, name='discriminator_y') # D
dx_fake = discriminator(image=fake_x, gen_label = y_label, reuse=False, name='discriminator_x') # D'
dy_real = discriminator(image=y_img, gen_label = y_label, reuse=True, name='discriminator_y') # D
dx_real = discriminator(image=x_img, gen_label = x_label, reuse=True, name='discriminator_x') #D'
final_loss = gan_loss(dy_fake, tf.ones_like(dy_fake)) + gan_loss(dx_fake, tf.ones_like(dx_fake)) + args.lamda*l1_loss(x_label, fake_x_) + args.lamda*l1_loss(y_label, fake_y_) # final objective function
dy_loss_real = gan_loss(dy_real, tf.ones_like(dy_real))
dy_loss_fake = gan_loss(dy_fake, tf.zeros_like(dy_fake))
dy_loss = (dy_loss_real + dy_loss_fake) / 2
dx_loss_real = gan_loss(dx_real, tf.ones_like(dx_real))
dx_loss_fake = gan_loss(dx_fake, tf.zeros_like(dx_fake))
dx_loss = (dx_loss_real + dx_loss_fake) / 2
dis_loss = dy_loss + dx_loss # discriminator loss
final_loss_sum = tf.summary.scalar("final_objective", final_loss)
dx_loss_sum = tf.summary.scalar("dx_loss", dx_loss)
dy_loss_sum = tf.summary.scalar("dy_loss", dy_loss)
dis_loss_sum = tf.summary.scalar("dis_loss", dis_loss)
discriminator_sum = tf.summary.merge([dx_loss_sum, dy_loss_sum, dis_loss_sum])
x_images_summary = tf.py_func(cv_inv_proc, [x_img], tf.float32) #(1, 256, 256, 3) float32
y_fake_cv2inv_images_summary = tf.py_func(cv_inv_proc, [fake_y], tf.float32) #(1, 256, 256, 3) float32
x_label_summary = tf.py_func(label_proc, [x_label], tf.float32) #(1, 256, 256, 3) float32
x_gen_label_summary = tf.py_func(label_inv_proc, [fake_x_], tf.float32) #(1, 256, 256, 3) float32
image_summary = tf.summary.image('images', tf.concat(axis=2, values=[x_images_summary, y_fake_cv2inv_images_summary, x_label_summary, x_gen_label_summary]), max_outputs=3)
summary_writer = tf.summary.FileWriter(args.snapshot_dir, graph=tf.get_default_graph())
g_vars = [v for v in tf.trainable_variables() if 'generator' in v.name]
d_vars = [v for v in tf.trainable_variables() if 'discriminator' in v.name]
lr = tf.placeholder(tf.float32, None, name='learning_rate')
d_optim = tf.train.AdamOptimizer(lr, beta1=args.beta1)
g_optim = tf.train.AdamOptimizer(lr, beta1=args.beta1)
d_grads_and_vars = d_optim.compute_gradients(dis_loss, var_list=d_vars)
d_train = d_optim.apply_gradients(d_grads_and_vars) # update weights of D and D'
g_grads_and_vars = g_optim.compute_gradients(final_loss, var_list=g_vars)
g_train = g_optim.apply_gradients(g_grads_and_vars) # update weights of G, G', S and S'
train_op = tf.group(d_train, g_train)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=50)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
counter = 0 # training step
for epoch in range(args.epoch):
shuffle(x_datalists) # change the order of x images
shuffle(y_datalists) # change the order of y images
lrate = args.base_lr if epoch < args.epoch_step else args.base_lr*(args.epoch-epoch)/(args.epoch-args.epoch_step)
for step in range(len(x_datalists)):
counter += 1
x_image_resize, x_label_resize, y_image_resize, y_label_resize = TrainImageReader(args.x_image_forpath, args.x_label_forpath, args.y_image_forpath, args.y_label_forpath, x_datalists, y_datalists, step, args.image_size)
batch_x_image = np.expand_dims(np.array(x_image_resize).astype(np.float32), axis = 0)
batch_x_label = np.expand_dims(np.array(x_label_resize).astype(np.float32), axis = 0)
batch_y_image = np.expand_dims(np.array(y_image_resize).astype(np.float32), axis = 0)
batch_y_label = np.expand_dims(np.array(y_label_resize).astype(np.float32), axis = 0)
start_time = time.time()
feed_dict = { lr : lrate, x_img : batch_x_image, x_label : batch_x_label, y_img : batch_y_image, y_label : batch_y_label}
if counter % args.save_pred_every == 0:
final_loss_value, dis_loss_value, _ = sess.run([final_loss, dis_loss, train_op], feed_dict=feed_dict)
save(saver, sess, args.snapshot_dir, counter)
elif counter % args.summary_pred_every == 0:
final_loss_value, dis_loss_value, final_loss_sum_value, discriminator_sum_value, image_summary_value, _ = \
sess.run([final_loss, dis_loss, final_loss_sum, discriminator_sum, image_summary, train_op], feed_dict=feed_dict)
summary_writer.add_summary(final_loss_sum_value, counter)
summary_writer.add_summary(discriminator_sum_value, counter)
summary_writer.add_summary(image_summary_value, counter)
else:
final_loss_value, dis_loss_value, _ = \
sess.run([final_loss, dis_loss, train_op], feed_dict=feed_dict)
print('epoch {:d} step {:d} \t final_loss = {:.3f}, dis_loss = {:.3f}'.format(epoch, step, final_loss_value, dis_loss_value))
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()