forked from modelscope/DiffSynth-Studio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kolors_text_to_image.py
38 lines (33 loc) · 1.68 KB
/
kolors_text_to_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from diffsynth import ModelManager, SDXLImagePipeline, download_models
import torch
# Download models
# https://huggingface.co/Kwai-Kolors/Kolors
download_models(["Kolors"])
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/kolors/Kolors/text_encoder",
"models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors",
"models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors"
])
pipe = SDXLImagePipeline.from_model_manager(model_manager)
# Optional (Int4 quantize) pip install cpm_kernels
# pipe.text_encoder_kolors = pipe.text_encoder_kolors.quantize(4)
# torch.cuda.empty_cache()
prompt = "一幅充满诗意美感的全身画,泛红的肤色,画中一位银色长发、蓝色眼睛、肤色红润、身穿蓝色吊带连衣裙的少女漂浮在水下,面向镜头,周围是光彩的气泡,和煦的阳光透过水面折射进水下"
negative_prompt = "半身,苍白的肤色,蜡黄的肤色,尸体,错误的眼睛,糟糕的人脸,毁容,糟糕的艺术,变形,多余的肢体,模糊的颜色,模糊,重复,病态,残缺,错误的手指,口红,腮红"
torch.manual_seed(7)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=50,
cfg_scale=4,
)
image.save(f"image_1024.jpg")
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
input_image=image.resize((2048, 2048)), denoising_strength=0.4, height=2048, width=2048,
num_inference_steps=50,
cfg_scale=4,
)
image.save("image_2048.jpg")