-
Notifications
You must be signed in to change notification settings - Fork 61
/
training_example.py
54 lines (44 loc) · 2.37 KB
/
training_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import llama
import torch
import pandas as pd
from torch.utils.data import Dataset, random_split
from transformers import TrainingArguments, Trainer
MODEL = 'decapoda-research/llama-7b-hf'
DATA_FILE_PATH = 'elon_musk_tweets.csv'
texts = pd.read_csv(DATA_FILE_PATH)['text']
tokenizer = llama.LLaMATokenizer.from_pretrained(MODEL)
model = llama.LLaMAForCausalLM.from_pretrained(MODEL).cuda()
class TextDataset(Dataset):
def __init__(self, txt_list, tokenizer, max_length):
self.labels = []
self.input_ids = []
self.attn_masks = []
for txt in txt_list:
encodings_dict = tokenizer(txt, truncation = True, max_length = max_length, padding = "max_length")
self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
def __len__(self): return len(self.input_ids)
def __getitem__(self, idx): return self.input_ids[idx], self.attn_masks[idx]
dataset = TextDataset(texts, tokenizer, max_length = max([len(tokenizer.encode(text)) for text in texts]))
train_dataset, val_dataset = random_split(dataset, [int(0.9 * len(dataset)), len(dataset) - int(0.9 * len(dataset))])
training_args = TrainingArguments(
save_steps = 5000,
warmup_steps = 10,
logging_steps = 100,
weight_decay = 0.05,
num_train_epochs = 1,
logging_dir = './logs',
output_dir = './results',
per_device_eval_batch_size = 1,
per_device_train_batch_size = 1)
Trainer(model = model,
args = training_args,
eval_dataset = val_dataset,
train_dataset = train_dataset,
data_collator = lambda data: {'input_ids': torch.stack([f[0] for f in data]), 'attention_mask': torch.stack([f[1] for f in data]), 'labels': torch.stack([f[0] for f in data])}).train()
sample_outputs = model.generate(tokenizer('', return_tensors="pt").input_ids.cuda(),
do_sample = True,
top_k = 50,
max_length = 300,
top_p = 0.95,
temperature = 1.0)