-
Notifications
You must be signed in to change notification settings - Fork 0
/
read_binary_org.cpp.bkg
250 lines (206 loc) · 7.01 KB
/
read_binary_org.cpp.bkg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
Name: read_binary.cpp
Created by: Stefan Ritt <[email protected]>
Date: July 30th, 2014
Purpose: Example file to read binary data saved by DRSOsc.
Compile and run it with:
gcc -o read_binary read_binary.cpp
./read_binary <filename>
This program assumes that a pulse from a signal generator is split
and fed into channels #1 and #2. It then calculates the time difference
between these two pulses to show the performance of the DRS board
for time measurements.
$Id: read_binary.cpp 22290 2016-04-27 14:51:37Z ritt $
*/
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
typedef struct {
char tag[3];
char version;
} FHEADER;
typedef struct {
char time_header[4];
} THEADER;
typedef struct {
char bn[2];
unsigned short board_serial_number;
} BHEADER;
typedef struct {
char event_header[4];
unsigned int event_serial_number;
unsigned short year;
unsigned short month;
unsigned short day;
unsigned short hour;
unsigned short minute;
unsigned short second;
unsigned short millisecond;
unsigned short range;
} EHEADER;
typedef struct {
char tc[2];
unsigned short trigger_cell;
} TCHEADER;
typedef struct {
char c[1];
char cn[3];
} CHEADER;
/*-----------------------------------------------------------------------------*/
int main(int argc, const char * argv[])
{
FHEADER fh;
THEADER th;
BHEADER bh;
EHEADER eh;
TCHEADER tch;
CHEADER ch;
unsigned int scaler;
unsigned short voltage[1024];
double waveform[16][4][1024], time[16][4][1024];
float bin_width[16][4][1024];
int i, j, b, chn, n, chn_index, n_boards;
double t1, t2, dt;
char filename[256];
int ndt;
double threshold, sumdt, sumdt2;
if (argc > 1)
strcpy(filename, argv[1]);
else {
printf("Usage: read_binary <filename>\n");
return 0;
}
// open the binary waveform file
FILE *f = fopen(filename, "r");
if (f == NULL) {
printf("Cannot find file \'%s\'\n", filename);
return 0;
}
// read file header
fread(&fh, sizeof(fh), 1, f);
if (fh.tag[0] != 'D' || fh.tag[1] != 'R' || fh.tag[2] != 'S') {
printf("Found invalid file header in file \'%s\', aborting.\n", filename);
return 0;
}
if (fh.version != '2') {
printf("Found invalid file version \'%c\' in file \'%s\', should be \'2\', aborting.\n", fh.version, filename);
return 0;
}
// read time header
fread(&th, sizeof(th), 1, f);
if (memcmp(th.time_header, "TIME", 4) != 0) {
printf("Invalid time header in file \'%s\', aborting.\n", filename);
return 0;
}
for (b = 0 ; ; b++) {
// read board header
fread(&bh, sizeof(bh), 1, f);
if (memcmp(bh.bn, "B#", 2) != 0) {
// probably event header found
fseek(f, -4, SEEK_CUR);
break;
}
printf("Found data for board #%d\n", bh.board_serial_number);
// read time bin widths
memset(bin_width[b], sizeof(bin_width[0]), 0);
for (chn=0 ; chn<5 ; chn++) {
fread(&ch, sizeof(ch), 1, f);
if (ch.c[0] != 'C') {
// event header found
fseek(f, -4, SEEK_CUR);
break;
}
i = ch.cn[2] - '0' - 1;
printf("Found timing calibration for channel #%d\n", i+1);
fread(&bin_width[b][i][0], sizeof(float), 1024, f);
// fix for 2048 bin mode: double channel
if (bin_width[b][i][1023] > 10 || bin_width[b][i][1023] < 0.01) {
for (j=0 ; j<512 ; j++)
bin_width[b][i][j+512] = bin_width[b][i][j];
}
}
}
n_boards = b;
// initialize statistics
ndt = 0;
sumdt = sumdt2 = 0;
// loop over all events in the data file
for (n=0 ; ; n++) {
// read event header
i = (int)fread(&eh, sizeof(eh), 1, f);
if (i < 1)
break;
printf("Found event #%d\n", eh.event_serial_number);
// loop over all boards in data file
for (b=0 ; b<n_boards ; b++) {
// read board header
fread(&bh, sizeof(bh), 1, f);
if (memcmp(bh.bn, "B#", 2) != 0) {
printf("Invalid board header in file \'%s\', aborting.\n", filename);
return 0;
}
// read trigger cell
fread(&tch, sizeof(tch), 1, f);
if (memcmp(tch.tc, "T#", 2) != 0) {
printf("Invalid trigger cell header in file \'%s\', aborting.\n", filename);
return 0;
}
if (n_boards > 1)
printf("Found data for board #%d\n", bh.board_serial_number);
// reach channel data
for (chn=0 ; chn<4 ; chn++) {
// read channel header
fread(&ch, sizeof(ch), 1, f);
if (ch.c[0] != 'C') {
// event header found
fseek(f, -4, SEEK_CUR);
break;
}
chn_index = ch.cn[2] - '0' - 1;
fread(&scaler, sizeof(int), 1, f);
fread(voltage, sizeof(short), 1024, f);
for (i=0 ; i<1024 ; i++) {
// convert data to volts
waveform[b][chn_index][i] = (voltage[i] / 65536. + eh.range/1000.0 - 0.5);
// calculate time for this cell
for (j=0,time[b][chn_index][i]=0 ; j<i ; j++)
time[b][chn_index][i] += bin_width[b][chn_index][(j+tch.trigger_cell) % 1024];
}
}
// align cell #0 of all channels
t1 = time[b][0][(1024-tch.trigger_cell) % 1024];
for (chn=1 ; chn<4 ; chn++) {
t2 = time[b][chn][(1024-tch.trigger_cell) % 1024];
dt = t1 - t2;
for (i=0 ; i<1024 ; i++)
time[b][chn][i] += dt;
}
t1 = t2 = 0;
threshold = 0.3;
// find peak in channel 1 above threshold
for (i=0 ; i<1022 ; i++)
if (waveform[b][0][i] < threshold && waveform[b][0][i+1] >= threshold) {
t1 = (threshold-waveform[b][0][i])/(waveform[b][0][i+1]-waveform[b][0][i])*(time[b][0][i+1]-time[b][0][i])+time[b][0][i];
break;
}
// find peak in channel 2 above threshold
for (i=0 ; i<1022 ; i++)
if (waveform[b][1][i] < threshold && waveform[b][1][i+1] >= threshold) {
t2 = (threshold-waveform[b][1][i])/(waveform[b][1][i+1]-waveform[b][1][i])*(time[b][1][i+1]-time[b][1][i])+time[b][1][i];
break;
}
// calculate distance of peaks with statistics
if (t1 > 0 && t2 > 0) {
ndt++;
dt = t2 - t1;
sumdt += dt;
sumdt2 += dt*dt;
}
}
}
// print statistics
printf("dT = %1.3lfns +- %1.1lfps\n", sumdt/ndt, 1000*sqrt(1.0/(ndt-1)*(sumdt2-1.0/ndt*sumdt*sumdt)));
return 1;
}