forked from SanaxM/BraTPRO-challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
58 lines (42 loc) · 1.84 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from torch import nn
import torch
class CNN(nn.Module):
def __init__(self, classes):
super().__init__()
self.conv_layer1 = nn.Conv3d(in_channels=3, out_channels=16, kernel_size=3)
self.max_pool1 = nn.MaxPool3d(kernel_size=2, stride=2)
self.conv_layer2 = nn.Conv3d(in_channels=16, out_channels=32, kernel_size=3)
self.relu1 = nn.ReLU()
self.max_pool2 = nn.MaxPool3d(kernel_size = 2, stride = 2)
self.conv_layer3 = nn.Conv3d(in_channels=32, out_channels=16, kernel_size=3)
self.conv_layer4 = nn.Conv3d(in_channels=16, out_channels=1, kernel_size=2)
self.relu2 = nn.ReLU()
self.fc = nn.Linear(1, classes)
def setAvgPoolDim(self, d, h, w):
return nn.AvgPool3d((d, h, w))
def setLinearDim(self, d, h, w):
return nn.Linear(d * h * w, 1, device='cuda')
def forward(self, input):
try:
print("input shape: ", input.shape)
except:
print("Input is a list. Create a tensor input.")
input = torch.cat(input)
input = input.cuda()
# ensure data types of images are torch.float32
if input.dtype == torch.float64:
input = input.to(torch.float32)
out = self.conv_layer1(input)
out = self.max_pool1(out)
out = self.conv_layer2(out)
out = self.relu1(out)
out = self.max_pool2(out)
out = self.conv_layer3(out)
out = self.conv_layer4(out)
out = self.setAvgPoolDim(out.shape[2], out.shape[3], out.shape[4])(out)
out = self.setLinearDim(out.shape[2], out.shape[3], out.shape[4])(out)
out = self.relu2(out)
out = self.fc(out)
out = out.view(out.size(0), -1)
print("Final output shape:", out.shape)
return out