-
Notifications
You must be signed in to change notification settings - Fork 19
/
math_tool.py
134 lines (117 loc) · 3.69 KB
/
math_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import math
import cmath
import numpy as np
import pandas as pd
from numpy import *
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d
def cartesian_coordinate_to_spherical_coordinate(cartesian_coordinate):
"""
transmit cartesian_coordinate_to_spherical_coordinate
input 1 X 3 np.array, [x, y, z]
output 1 X 3 np.array, [r, theta, fai]
"""
r = np.linalg.norm(cartesian_coordinate)
if abs(cartesian_coordinate[2]) < 1e-8:
theta = math.atan(np.linalg.norm(cartesian_coordinate[0:2])/1e-8)
else:
theta = math.atan(np.linalg.norm(cartesian_coordinate[0:2])/cartesian_coordinate[2])
if abs(cartesian_coordinate[0]) < 1e-8:
x = 1e-8
else:
x = cartesian_coordinate[0]
y = cartesian_coordinate[1]
if abs(y) < 1e-8:
y = 1e-8
if y > 0 and x > 0:
fai = math.atan(y/x)
elif x < 0 and y > 0:
fai = math.atan(y/x) + math.pi
elif x < 0 and y < 0:
fai = math.atan(y/x) - math.pi
else:
fai = math.atan(y/x)
return r, theta, fai
def vecter_normalization(cartesian_coordinate):
return cartesian_coordinate/np.linalg.norm(cartesian_coordinate)
def get_coor_ref(coor_sys, coor):
"""
input: coor_sys: normalized 1,3 np.array list (1,3)
coor: coordinate under earth system
output: referenced coordinate for x,y, normalized 1,3 np.array
"""
x_ref = np.dot(coor_sys[0],coor)
y_ref = np.dot(coor_sys[1],coor)
z_ref = np.dot(coor_sys[2],coor)
return np.array([x_ref, y_ref, z_ref])
def dB_to_normal(dB):
"""
input: dB
output: normal vaule
"""
return math.pow(10, (dB/10))
def normal_to_dB(normal):
"""
input: normal
output: dB value
"""
return -10 * math.log10(normal)
def diag_to_vector(diag):
"""
transfer a diagnal matrix into a vector
"""
vec_size = np.shape(diag)[0]
vector = np.mat(np.zeros((vec_size, 1), dtype=complex), dtype=complex)
for i in range(vec_size):
vector[i, 0] = diag[i, i]
return vector
def vector_to_diag(vector):
"""
transfer a vector into a diagnal matrix
"""
vec_size = np.shape(vector)[0]
diag = np.mat(np.zeros((vec_size, vec_size), dtype=complex), dtype=complex)
for i in range(vec_size):
diag[i, i] = vector[i, 0]
return diag
def bigger_than_zero(value):
"""
max(0,value)
"""
return max(0, value)
def dataframe_to_dictionary(df):
"""
docstring
"""
return {col_name : df[col_name].values for col_name in df.columns.values}
def convert_list_to_complex_matrix(list_real, shape):
"""
list_real is a 2* N*K dim list, convert it to N X K complex matrix
shape is a tuple (N, K)
"""
N = shape[0]
K = shape[1]
matrix_complex =np.mat(np.zeros((N, K), dtype=complex), dtype=complex)
for i in range(N):
for j in range(K):
matrix_complex[i, j] = list_real[2*(i*K + j)] + 1j * list_real[2*(i*K + j) + 1]
return matrix_complex
def convert_list_to_complex_diag(list_real, diag_row_num):
"""
list_real is a M dim list, convert it to M X M complex diag matrix
diag_row_num is the M
"""
M = diag_row_num
diag_matrix_complex = np.mat(np.zeros((M, M), dtype=complex), dtype=complex)
for i in range(M):
diag_matrix_complex[i, i] = cmath.exp(1j * list_real[i] * math.pi)
return diag_matrix_complex
def map_to(x, x_range:tuple, y_range:tuple):
x_min = x_range[0]
x_max = x_range[1]
y_min = y_range[0]
y_max = y_range[1]
y = y_min+(y_max - y_min) / (x_max - x_min) * (x - x_min)
return y