forked from d2l-ai/d2l-tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.ini
80 lines (51 loc) · 2.14 KB
/
config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
[project]
# The project name, used as the filename of the package and the PDF file. For
# example, if set to d2l-book, then will build d2l-book.zip and d2l-book.pdf
name = d2l-tvm
# Book title. It will be displayed on the top-right of the HTML page and the
# front page of the PDF file
title = Dive into Deep Learning Compiler
author = Contributors
copyright = 2019, All authors. Licensed under Apache 2.0
release = 0.1
[html]
# A list of links that is displayed on the navbar. A link consists of three
# items: name, URL, and a fontawesome icon
# (https://fontawesome.com/icons?d=gallery). Items are separated by commas.
header_links = All Notebooks, http://tvm.d2l.ai/d2l-tvm.zip, fas fa-download,
PDF, http://tvm.d2l.ai/d2l-tvm.pdf, fas fa-file-pdf,
GitHub, https://github.com/d2l-ai/d2l-tvm, fab fa-github
favicon = static/favicon.png
html_logo = static/logo-with-text.png
[pdf]
latex_logo = static/logo.png
[build]
# A list of wildcards to indicate the markdown files that need to be evaluated as
# Jupyter notebooks.
notebooks = *.md **/*.md
# A list of files that will be copied to the build folder.
resources = img/ data/ d2ltvm/ d2ltvm.bib setup.py
# Files that will be skipped.
exclusions = README.md
# If True (default), then will evaluate the notebook to obtain outputs.
eval_notebook = True
# If True, the mark the build as failed for any warning. Default is False.
warning_is_error = False
# A list of files, if anyone is modified after the last build, will re-build all
# documents.
dependencies =
tabs = tvm
[library]
# Where code blocks will save to
save_filename = d2ltvm/d2ltvm.py
# The parttern to mark this block will be saved.
save_mark = Save to the d2ltvm package
[deploy]
s3_bucket = s3://tvm.d2l.ai
google_analytics_tracking_id = UA-96378503-19
[colab]
github_repo = tvm, d2l-ai/d2l-tvm-colab
libs = tvm, tvm, https://tvm-repo.s3-us-west-2.amazonaws.com/tvm-0.7.dev1-cp37-cp37m-linux_x86_64.whl https://tvm-repo.s3-us-west-2.amazonaws.com/topi-0.7.dev1-py3-none-any.whl
tvm, d2ltvm, git+https://github.com/d2l-ai/d2l-tvm
tvm, mxnet, mxnet-cu100
replace_svg_url = img, http://tvm.d2l.ai/_images