forked from RESEARCHINGETERNITYEGPHILIPPOV/mm0
-
Notifications
You must be signed in to change notification settings - Fork 1
/
peano_hex.mm1
766 lines (709 loc) · 36 KB
/
peano_hex.mm1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import "peano.mm1";
-- The string preamble. This is used for interfacing with
-- the real world, making concrete inputs and outputs.
--| The syntactic sort of hexadecimal digits.
--| This contains only the terms `x0..xf` and variables.
strict free sort hex;
--| Hexadecimal digit `0`.
@(add-eval 0) term x0: hex;
--| Hexadecimal digit `1`.
@(add-eval 1) term x1: hex;
--| Hexadecimal digit `2`.
@(add-eval 2) term x2: hex;
--| Hexadecimal digit `3`.
@(add-eval 3) term x3: hex;
--| Hexadecimal digit `4`.
@(add-eval 4) term x4: hex;
--| Hexadecimal digit `5`.
@(add-eval 5) term x5: hex;
--| Hexadecimal digit `6`.
@(add-eval 6) term x6: hex;
--| Hexadecimal digit `7`.
@(add-eval 7) term x7: hex;
--| Hexadecimal digit `8`.
@(add-eval 8) term x8: hex;
--| Hexadecimal digit `9`.
@(add-eval 9) term x9: hex;
--| Hexadecimal digit `a = 10`.
@(add-eval 10) term xa: hex;
--| Hexadecimal digit `b = 11`.
@(add-eval 11) term xb: hex;
--| Hexadecimal digit `c = 12`.
@(add-eval 12) term xc: hex;
--| Hexadecimal digit `d = 13`.
@(add-eval 13) term xd: hex;
--| Hexadecimal digit `e = 14`.
@(add-eval 14) term xe: hex;
--| Hexadecimal digit `f = 15`.
@(add-eval 15) term xf: hex;
--| The syntactic sort of (8-bit) characters.
--| This contains only terms `ch a b` where `a` and `b` are hex digits,
--| for example `ch x4 x1`, denoting `\x41`, the ASCII character `A`.
strict free sort char;
--| The only constructor for the sort `char`:
--| `ch a b` is the character with high nibble `a` and low nibble `b`.
@(add-eval @ fn (a b) {{16 * (eval a)} + (eval b)})
term ch: hex > hex > char;
--| The syntactic sort of byte strings.
--| The only constructors of this sort are:
--| * `s0`: the empty string
--| * `s1 c` where `c: char`: a one byte string
--| * `sadd s t`, or `s '+ t`: the concatenation of strings
--|
--| Because of this representation, there are multiple equivalent ways
--| to represent a string. (Formally, the function `s2n` is not injective.)
strict free sort string;
-- Note: We use lists of characters for (eval s) because we use scons a lot
-- to construct strings and the frequent reallocation would get expensive otherwise.
-- Anyway you shouldn't use (eval s) for concrete strings, because the logic has
-- its own built in string evaluator (this is why strings are axiomatic in the
-- first place) which is much more efficient. You can use (eval-string s) to invoke
-- the built in string evaluator from lisp.
--| The empty string.
@(add-eval ())
term s0: string;
--| A singleton (length 1) string formed from a character.
@(add-eval @ fn (c) '(,c))
term s1: char > string;
--| `sadd s t`, or `s '+ t`: A string formed by concatenating two smaller strings.
@(add-eval @ fn (s t) (append (eval s) (eval t)))
term sadd: string > string > string; infixr sadd: $'+$ prec 51;
--| `c ': s` appends `c` to the front of string `s`.
@(add-eval @ fn (c s) (cons (eval c) (eval s)))
def scons (c: char) (s: string): string = $ s1 c '+ s $;
infixr scons: $':$ prec 53;
-- Peano translation functions. The sorts `hex`, `char`, `string`
-- are closed classes, but we can embed them in `nat` as lists
-- of numbers less than 256, and prove theorems on `nat` instead.
-- We have to introduce some axioms to deal with the coercion
-- functions though.
@(add-eval 11) def d11: nat = $suc 10$; prefix d11: $11$ prec max;
@(add-eval 12) def d12: nat = $suc 11$; prefix d12: $12$ prec max;
@(add-eval 13) def d13: nat = $suc 12$; prefix d13: $13$ prec max;
@(add-eval 14) def d14: nat = $suc 13$; prefix d14: $14$ prec max;
@(add-eval 15) def d15: nat = $suc 14$; prefix d15: $15$ prec max;
@(add-eval 16) def d16: nat = $suc 15$; prefix d16: $16$ prec max;
--| `h2n a`, the coercion `hex > nat`, embeds a hex digit to a natural number.
--| Because we cannot define functions by case distinction on `hex`, we must
--| axiomatize the value of this coercion on each digit.
--| This implies that all the elements of `hex` are distinct.
@(add-eval eval)
term h2n: hex > nat; coercion h2n: hex > nat;
-- The `eval-check` is an annotation that runs the evaluator on these expressions
-- to make sure that they come out true.
@eval-check axiom h2n0: $ x0 = 0 $; @eval-check axiom h2n1: $ x1 = 1 $;
@eval-check axiom h2n2: $ x2 = 2 $; @eval-check axiom h2n3: $ x3 = 3 $;
@eval-check axiom h2n4: $ x4 = 4 $; @eval-check axiom h2n5: $ x5 = 5 $;
@eval-check axiom h2n6: $ x6 = 6 $; @eval-check axiom h2n7: $ x7 = 7 $;
@eval-check axiom h2n8: $ x8 = 8 $; @eval-check axiom h2n9: $ x9 = 9 $;
@eval-check axiom h2na: $ xa = 10 $; @eval-check axiom h2nb: $ xb = 11 $;
@eval-check axiom h2nc: $ xc = 12 $; @eval-check axiom h2nd: $ xd = 13 $;
@eval-check axiom h2ne: $ xe = 14 $; @eval-check axiom h2nf: $ xf = 15 $;
--| This allows us to prove facts about hex digits by case analysis.
--| It is not provable from the above axioms because the fact that the "hex"
--| sort has only the given 16 constructors is only observable from outside the theory.
-- We can't use `eval-check` here because the axiom has a free variable.
axiom h2nlt (h: hex): $ h < 16 $;
--| `c2n a`, the coercion `char > nat`, embeds a character
--| as a natural number less than 256.
@(add-eval eval)
term c2n: char > nat; coercion c2n: char > nat;
--| The value of `c2n (ch hi lo) = h2n hi * 16 + h2n lo`.
axiom c2nch (hi lo: hex): $ ch hi lo = hi * 16 + lo $;
--| The `c2n` function is less than 256 for all elements of the type `char`.
--| This ensures that there are no other elements in the syntactic sort `char`.
axiom c2nlt (c: char): $ c < 16 * 16 $;
--| `s2n s`, the coercion `string > nat`,
--| interprets a string as a `List u8` in the obvious way:
--| * `s2n s0 = 0`
--| * `s2n (s1 c) = c2n c : 0`
--| * `s2n (s '+ t) = s2n s ++ s2n t`
--|
--| Because `string` is a syntactic sort, it does not have quantifiers
--| so our ability to prove properties about it is limited;
--| but using this function we can obtain a `nat` which we can prove
--| theorems about.
@(add-eval eval)
term s2n: string > nat; coercion s2n: string > nat;
axiom s2ns0: $ s0 = 0 $;
axiom s2ns1 (c: char): $ s1 c = c : 0 $;
axiom s2nsadd (s t: string): $ s '+ t = s ++ t $;
--| The `s2n` function returns a list all of whose elements
--| are numbers less than 256.
axiom s2nlt {c: nat} (s: string): $ all {c | c < 16 * 16} s $;
theorem s2nscons: $ c ': s = c : s $ =
'(eqtr s2nsadd @ eqtr (appendeq1 s2ns1) append1);
theorem s2nscons0: $ c ': s0 = s1 c $ =
'(eqtr s2nsadd @ eqtr (appendeq2 s2ns0) append02);
theorem sconseq1 (c1 c2 s): $ c1 = c2 -> c1 ': s = c2 ': s $ =
'(eqtr4g s2nscons s2nscons conseq1);
theorem sconseq2 (c s1 s2): $ s1 = s2 -> c ': s1 = c ': s2 $ =
'(eqtr4g s2nscons s2nscons conseq2);
theorem s2n_A (h1: $ s = a $) (h2: $ t = b $): $ s '+ t = a ++ b $ =
'(eqtr s2nsadd @ appendeq h1 h2);
theorem s2n_1 (h: $ c = a $): $ s1 c = a : 0 $ = '(eqtr s2ns1 @ conseq1 h);
theorem s2n_S (h1: $ c = a $) (h2: $ s = b $): $ c ': s = a : b $ =
'(eqtr (s2n_A (s2n_1 h1) h2) append1);
theorem s2n_SE (h: $ s = a $): $ c ': s = c : a $ = '(s2n_S eqid h);
theorem s2n_SAE (h: $ s = a ++ b $): $ c ': s = c : a ++ b $ =
'(eqtr4 (s2n_SE h) appendS);
theorem s2n_SASE (h: $ s = a ++ b $): $ c ': s = (c ': a) ++ b $ =
'(eqtr4 (s2n_SAE h) @ appendeq1 s2nscons);
theorem append01i (h: $ a = b $): $ a = 0 ++ b $ = '(eqtr4 h append0);
theorem s2n_R0: $ s0 = repeat a 0 $ = '(eqtr4 s2ns0 repeat0);
theorem s2n_R1 (h: $ c = a $): $ s1 c = repeat a 1 $ =
'(eqtr4 (s2n_1 h) repeat1);
theorem s2n_RA (h1: $ s = repeat a m $) (h2: $ t = repeat a n $) (h3: $ m + n = p $):
$ s '+ t = repeat a p $ = '(eqtr (s2n_A h1 h2) @ eqtr3 repeatadd @ repeateq2 h3);
theorem s2n_RS (h1: $ c = a $) (h2: $ s = repeat a n $) (h3: $ suc n = p $):
$ c ': s = repeat a p $ = '(eqtr (s2n_S h1 h2) @ eqtr3 repeatS @ repeateq2 h3);
theorem saddS: $ c ': s '+ t = c ': (s '+ t) $ =
'(eqtr4 (s2n_A s2nscons eqid) @ s2n_SAE s2nsadd);
@(add-eval @ fn (a b) {{16 * (eval a)} + (eval b)})
local def hex (a: nat) (x: hex): nat = $ a * 16 + x $;
infixl hex: $:x$ prec 120;
@(register-eqd 'hex) theorem hexeqd (G a1 a2 x1 x2)
(ha: $ G -> a1 = a2 $) (hx: $ G -> x1 = x2 $): $ G -> hex a1 x1 = hex a2 x2 $ =
'(addeqd (muleq1d ha) hx);
theorem hexeq1: $ a1 = a2 -> hex a1 x = hex a2 x $ = '(hexeqd id eqidd);
theorem hexeq2: $ x1 = x2 -> hex a x1 = hex a x2 $ = '(hexeqd eqidd id);
theorem suc_xf: $ suc xf = 16 $ = '(suceq h2nf);
theorem hex01_: $ 0 :x a = a $ = '(eqtr (addeq1 mul01) add01);
theorem hex01: $ x0 :x a = a $ = '(eqtr (hexeq1 h2n0) hex01_);
theorem hex02: $ n :x x0 = n * 16 $ = '(eqtr (addeq2 h2n0) add0);
theorem hex10: $ x1 :x x0 = 16 $ = '(eqtr hex02 @ eqtr (muleq1 h2n1) mul11);
theorem c2nhex (h1 h2: hex): $ ch h1 h2 = h1 :x h2 $ = 'c2nch;
theorem c2nh2n: $ ch x0 a = h2n a $ = '(eqtr c2nhex hex01);
--| `(to-u8-ch a)` returns a pair `(c p)` where `p: c2n c = a`
do (def to-u8-ch @ match-fn
[('hex ('h2n a) b) '((ch ,a ,b) (c2nhex ,a ,b))]
[('h2n a) '((ch (x0) ,a) (c2nh2n ,a))]);
theorem suchexf: $ suc (a :x xf) = suc a :x x0 $ =
'(eqtr3 addS2 @ eqtr4 (addeq2 suc_xf) @ eqtr hex02 mulS1);
theorem addx01: $ x0 + a = a $ = '(eqtr (addeq1 h2n0) add01);
theorem addx02: $ a + x0 = a $ = '(eqtr (addeq2 h2n0) add0);
theorem addx12: $ a + x1 = suc a $ = '(eqtr (addeq2 h2n1) add12);
theorem mulx01: $ x0 * a = x0 $ = '(eqtr (muleq1 h2n0) @ eqtr4 mul01 h2n0);
theorem mulx02: $ a * x0 = x0 $ = '(eqtr (muleq2 h2n0) @ eqtr4 mul0 h2n0);
theorem mulx11: $ x1 * a = a $ = '(eqtr (muleq1 h2n1) mul11);
theorem mulx12: $ a * x1 = a $ = '(eqtr (muleq2 h2n1) mul12);
theorem h2n10: $ 16 = x1 :x x0 $ = '(eqtr2 hex02 mulx11);
do {
(def (sucs n) (iterate n (fn (x) '(suc ,x)) '(d0)))
(def (map-16 v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf) @ fn (n)
(if {n < 8}
(if {n < 4}
(match n [0 v0] [1 v1] [2 v2] [3 v3])
(match n [4 v4] [5 v5] [6 v6] [7 v7]))
(if {n < 12}
(match n [8 v8] [9 v9] [10 va] [11 vb])
(match n [12 vc] [13 vd] [14 ve] [15 vf]))))
(def hexstrings (map ->string '(0 1 2 3 4 5 6 7 8 9 a b c d e f)))
(def (on-hexstrings f) (apply map-16 (map f hexstrings)))
(def hexstring @ on-hexstrings @ fn (s) s)
(def hexdigit @ on-hexstrings @ fn (s) (atom-app 'x s))
(def h2nn @ on-hexstrings @ fn (s) (atom-app 'h2n s))
(def (->hex n)
(if {n >= 16} '(hex ,(->hex {n // 16}) @ ,(hexdigit {n % 16}))
'(h2n @ ,(hexdigit n))))
(def ->expr @ match-fn [(? number? e) (->hex e)] [e e])
(def hexdigit->number @ lookup-fn @ rmap (range 0 16) @ fn (n) '[,(hexdigit n) ,n])
(def hex->number @ match-fn
[('c2n e) (hex->number e)]
[('h2n (e)) (hexdigit->number e)]
[('ch (e1) (e2)) {{(hexdigit->number e1) * 16} + (hexdigit->number e2)}]
[('hex e1 (e2)) {{(hex->number e1) * 16} + (hexdigit->number e2)}]
[e (hexdigit->number e)])
(def (number->ch n) '(ch (,(hexdigit {n // 16})) (,(hexdigit {n % 16}))))
(def nz-hexnat? @ match-fn
[('hex e _) (nz-hexnat? e)]
[('h2n (e)) (def n (hexdigit->number e)) @ if (def? n) {n > 0} #f]
[_ #f])
(def hexnat? @ match-fn ['(h2n (x0)) #t] [e (nz-hexnat? e)])
(def (string->hex s)
(def n (string-len s))
@ letrec (
[(f i) @ if {i < n}
'(scons ,(number->ch @ string-nth i s) ,(f {i + 1}))
'(s0)])
(f 0))
};
do {
--| This allows us to use `$ ,0x1234 $` and `$ ,"hello" $` to splice
--| numbers and strings into theorem statements.
(def (to-expr-fallback s t) @ match t
[(? number?) @ match s
['hex '(,(hexdigit t))]
['char (number->ch t)]
[_ (->hex t)]]
[(? string?) @ match s
['nat '(s2n ,(string->hex t))]
['char (number->ch @ string-nth 0 t)]
[_ (string->hex t)]])
};
do {
-- Defines e.g. theorem deca: $ 10 = xa $; for all n < 16, accessible as (decn 10)
(def (dn n) (atom-app 'd n))
(def decdigit->number @ lookup-fn @ rmap (range 0 16) @ fn (n) '[,(dn n) ,n])
(def decn @ on-hexstrings @ fn (n)
@ let ([xn (atom-app 'x n)] [i (hex->number xn)]
[dn '(,(dn i))] [xn '(h2n (,xn))] [name (atom-app 'dec n)])
(add-thm! name () () '(eq ,dn ,xn) () @ fn ()
'(() (eqcomi ,xn ,dn @ ,(h2nn i))))
name)
};
theorem decsuc_lem (h1: $ h2n a = d $) (h2: $ h2n b = suc d $): $ suc a = b $ = '(eqtr4 (suceq h1) h2);
theorem decsucf: $ suc xf = x1 :x x0 $ = '(eqtr4 suc_xf hex10);
theorem decsucx (h: $ suc b = c $): $ suc (a :x b) = a :x c $ = '(eqtr3 addS2 @ addeq2 h);
theorem decsucxf (h: $ suc a = b $): $ suc (a :x xf) = b :x x0 $ = '(eqtr suchexf @ hexeq1 h);
do {
-- Defines e.g. theorem dsuca: $ suc 10 = 11 $;
-- for all n < 16, accessible as (dsucn 10)
(def dsucn @ on-hexstrings @ fn (s)
@ let ([i (hex->number @ atom-app 'x s)] [name (atom-app 'dsuc s)])
(if {i < 15} @ add-tac-thm! name () () '(eq (suc ,(dn i)) ,(dn {i + 1})) () @ fn () 'eqid)
name)
-- Defines e.g. theorem decsuca: $ suc xa = xb $;
-- for all n < 16, accessible as (decsucn 10)
(def decsucn @ on-hexstrings @ fn (s)
@ let ([xi (atom-app 'x s)] [i (hex->number xi)] [name (atom-app 'decsuc s)])
(if {i < 15}
@ let ([j {i + 1}] [xi '(,xi)] [xj '(,(hexdigit j))])
@ add-thm! name () () '(eq (suc (h2n ,xi)) (h2n ,xj)) () @ fn ()
@ let ([di '(,(dn i))] [sdi '(suc ,di)])
'(() (decsuc_lem ,xi ,xj ,di (,(h2nn i)) @
:conv (eq (h2n ,xj) ,sdi) (eq (h2n ,xj) @ :sym @ :unfold ,(dn j) () ,sdi) @
,(h2nn j))))
name)
--| Raw successor theorem generator: given `a` in normal form, returns `(b p)`
--| where `p` proves `suc a = b`
(def mksuc @ match-fn
['(hex ,a (,b)) @ match b
['xf @ match (mksuc a) @ (b p)
'((hex ,b (x0)) (decsucxf ,a ,b ,p))]
[_ (def i (hexdigit->number b)) (def c (hexdigit {i + 1}))
'((hex ,a (,c)) (decsucx ,a (,b) (,c) (,(decsucn i))))]]
['(h2n (,a)) (def i (hexdigit->number a))
'(,(->hex {i + 1}) (,(decsucn i)))])
--| Successor tactic: usable in refine scripts when the target is `suc a = ?b`,
--| producing a proof and unifying `?b`
(def (suctac refine t) @ match t @ $ suc ,a = ,_ $
@ match (mksuc a) @ (b p)
@ refine '{(:verb ,p) : $ suc ,a = ,b $})
};
theorem declt_lem (a b: hex) (h: $ suc a = b $): $ a < b $ = '(mpbi (lteq2 h) ltsucid);
theorem decltx1 (h: $ a < c $): $ a :x b < c :x d $ =
'(ltletr (mpbi ltadd2 h2nlt) @ letr (mpbi (leeq1 mulS1) @ lemul1a h) leaddid1);
theorem decltx2 (h: $ b < c $): $ a :x b < a :x c $ = '(mpbi ltadd2 h);
theorem declt0x (h: $ x0 < b $): $ h2n a < b :x c $ = '(mpbi (lteq1 hex01) @ decltx1 h);
do {
-- Defines e.g. theorem declt4a: $ x4 < xa $;
-- for all a < b <= 15, accessible as (decltn 4 10)
(def (decltn m n) @ if {m < n} (atom-app 'declt (hexstring m) (hexstring n)))
(begin
(def (f a b g)
@ let ([xa (hexdigit a)] [xb (hexdigit b)] [name (decltn a b)])
@ add-thm! name () () '(lt (h2n @ ,xa) (h2n @ ,xb)) () g)
(for 0 15 @ fn (a) (def b {a + 1}) @ f a b @ fn ()
'(() (declt_lem (,(hexdigit a)) (,(hexdigit b)) (,(decsucn a)))))
(for 0 14 @ fn (a) @ for {a + 1} 15 @ fn (b) (def c {b + 1}) @ f a c @ fn ()
(def (h a) '(h2n @ ,(hexdigit a)))
'(() (lttri ,(h a) ,(h b) ,(h c) (,(decltn a b)) (,(decltn b c))))))
--| Raw comparison theorem generator: given `a`, `b` in normal form, returns
--| * `(< p)` where `p: a < b`,
--| * '= (and `a` and `b` are identical), or
--| * `(> p)` where `p: b < a`
(def mkcmp2 @ match-fn*
[(('hex a (b)) ('hex c (d))) @ match (mkcmp2 a c)
[('< p) '(< (decltx1 ,a (,b) ,c (,d) ,p))]
[('> p) '(> (decltx1 ,c (,d) ,a (,b) ,p))]
['=
@ let ([bi (hexdigit->number b)] [di (hexdigit->number d)])
@ if {bi < di} '(< (decltx2 ,a (,b) (,d) (,(decltn bi di))))
@ if {bi > di} '(> (decltx2 ,a (,d) (,b) (,(decltn di bi))))
'=]]
[(('h2n (a)) ('hex b (c))) @ match (mkcmp2 '(h2n (x0)) b)
[('< p) '(< (declt0x (,a) ,b (,c) ,p))]]
[(('hex a (b)) ('h2n (c))) @ match (mkcmp2 '(h2n (x0)) a)
[('< p) '(> (declt0x (,c) ,a (,b) ,p))]]
[(('h2n (a)) ('h2n (b)))
@ let ([ai (hexdigit->number a)] [bi (hexdigit->number b)])
@ if {ai < bi} '(< (,(decltn ai bi)))
@ if {ai > bi} '(> (,(decltn bi ai)))
'=])
--| Comparison theorem generator: given a goal `a < b` or `a <= b`, produces a proof
(def mkcmphex @ match-fn
[('lt a b) @ match (mkcmp2 a b) @ '(< ,p) p]
[('le a b) @ match (mkcmp2 a b) ['(< ,p) '(ltlei ,a ,b ,p)] ['= '(leid ,a)]]
[('ne a b) @ match (mkcmp2 a b) ['(< ,p) '(ltnei ,a ,b ,p)] ['(> ,p) '(ltneri ,b ,a ,p)]])
--| Comparison tactic: usable in refine scripts when the target is `a < b` or `a <= b`,
--| producing a proof
(def (cmphextac refine t) @ refine '(:verb ,(mkcmphex t)))
};
theorem decadd_lem (h1: $ a + b = d $) (h2: $ suc b = c $) (h3: $ suc d = e $): $ a + c = e $ =
'(eqtr3 (addeq2 h2) @ eqtr addS @ eqtr (suceq h1) h3);
theorem decadc_lem (h1: $ a + b = c $) (h2: $ suc c = d $): $ suc (a + b) = d $ = '(eqtr (suceq h1) h2);
do {
-- Defines e.g. theorem decadd8a: $ x8 + xa = x1 :x x2 $;
-- for all a, b <= 15. (decaddn 8 10) returns the pair of the rhs and the theorem
(def decaddn
(def f
@ on-hexstrings @ fn (sa) @ let ([xa (atom-app 'x sa)] [a (hex->number xa)] [xa '(h2n @ ,xa)])
@ on-hexstrings @ fn (sb) @ let ([xb (atom-app 'x sb)] [b (hex->number xb)] [xb '(h2n @ ,xb)])
@ let ([e {a + b}] [xe (->hex e)] [name (atom-app 'decadd sa sb)])
(add-thm! name () () '(eq (add ,xa ,xb) ,xe) () @ fn ()
@ if {b = 0} '(() (addx02 ,xa))
@ let ([c {b - 1}] [xc (->hex c)] [d {e - 1}] [xd (->hex d)])
'(() (decadd_lem ,xa ,xc ,xb ,xd ,xe
(,(atom-app 'decadd sa (hexstring c)))
(,(decsucn c))
,(hd @ tl @ mksuc xd))))
(list xe name))
(fn (a b) ((f a) b)))
-- Defines e.g. theorem decadc8a: $ suc (x8 + xa) = x1 :x x3 $;
-- for all a, b <= 15. (decadcn 8 10) returns the pair of the rhs and the theorem
(def decadcn
(def f
@ on-hexstrings @ fn (sa) @ let ([xa (atom-app 'x sa)] [a (hex->number xa)] [xa '(h2n @ ,xa)])
@ on-hexstrings @ fn (sb) @ let ([xb (atom-app 'x sb)] [b (hex->number xb)] [xb '(h2n @ ,xb)])
@ let ([c {a + b}] [d {c + 1}] [xc (->hex c)] [xd (->hex d)] [name (atom-app 'decadc sa sb)])
(add-thm! name () () '(eq (suc (add ,xa ,xb)) ,xd) () @ fn ()
'(() (decadc_lem ,xa ,xb ,xc ,xd (,(atom-app 'decadd sa sb)) ,(hd @ tl @ mksuc xc))))
(list xd name))
(fn (a b) ((f a) b)))
--| `(decnot a) = (b p)` where `p: a + b = xf`
(def decnot @ match-fn @ (a)
@ let ([n (hexdigit->number a)] [m {15 - n}])
'((,(hexdigit m)) ,(nth 1 @ decaddn n m)))
};
theorem add_xx0 (h1: $ a + c = e $) (h2: $ b + d = f $): $ a :x b + c :x d = e :x f $ =
'(eqtr add4 @ addeq (eqtr3 addmul @ muleq1 h1) h2);
theorem add_xx1 (h1: $ suc (a + c) = e $) (h2: $ b + d = x1 :x f $): $ a :x b + c :x d = e :x f $ =
'(eqtr add4 @ eqtr (addeq (eqcomi addmul) h2) @ eqtr3 addass @
addeq1 @ eqtr3 addmul @ muleq1 @ eqtr addx12 h1);
theorem adc_xx0 (h1: $ a + c = e $) (h2: $ suc (b + d) = f $): $ suc (a :x b + c :x d) = e :x f $ =
'(eqtr (suceq add4) @ eqtr3 addS2 @ addeq (eqtr3 addmul @ muleq1 h1) h2);
theorem adc_xx1 (h1: $ suc (a + c) = e $) (h2: $ suc (b + d) = x1 :x f $): $ suc (a :x b + c :x d) = e :x f $ =
'(eqtr (suceq add4) @ eqtr3 addS2 @ eqtr (addeq (eqcomi addmul) h2) @ eqtr3 addass @
addeq1 @ eqtr3 addmul @ muleq1 @ eqtr addx12 h1);
theorem add_0x0 (h: $ a + c = d $): $ h2n a + b :x c = b :x d $ =
'(eqtr3 (addeq1 hex01) @ add_xx0 addx01 h);
theorem add_0x1 (h1: $ suc b = d $) (h2: $ a + c = x1 :x e $): $ h2n a + b :x c = d :x e $ =
'(eqtr3 (addeq1 hex01) @ add_xx1 (eqtr (suceq addx01) h1) h2);
theorem adc_0x0 (h: $ suc (a + c) = d $): $ suc (h2n a + b :x c) = b :x d $ =
'(eqtr3 (suceq @ addeq1 hex01) @ adc_xx0 addx01 h);
theorem adc_0x1 (h1: $ suc b = d $) (h2: $ suc (a + c) = x1 :x e $): $ suc (h2n a + b :x c) = d :x e $ =
'(eqtr3 (suceq @ addeq1 hex01) @ adc_xx1 (eqtr (suceq addx01) h1) h2);
theorem add_x00 (h: $ b + c = d $): $ a :x b + h2n c = a :x d $ =
'(eqtr3 (addeq2 hex01) @ add_xx0 addx02 h);
theorem add_x01 (h1: $ suc a = d $) (h2: $ b + c = x1 :x e $): $ a :x b + h2n c = d :x e $ =
'(eqtr3 (addeq2 hex01) @ add_xx1 (eqtr (suceq addx02) h1) h2);
theorem adc_x00 (h: $ suc (b + c) = d $): $ suc (a :x b + h2n c) = a :x d $ =
'(eqtr3 (suceq @ addeq2 hex01) @ adc_xx0 addx02 h);
theorem adc_x01 (h1: $ suc a = d $) (h2: $ suc (b + c) = x1 :x e $): $ suc (a :x b + h2n c) = d :x e $ =
'(eqtr3 (suceq @ addeq2 hex01) @ adc_xx1 (eqtr (suceq addx02) h1) h2);
do {
--| Raw addition theorem generator: given `a`, `b` in normal form,
--| returns `(c p)` where `p: a + b = c`
(def mkadd @ match-fn*
[(('hex a (b)) ('hex c (d))) @ match (decaddn (hexdigit->number b) (hexdigit->number d))
[(('hex _ f) p2) @ match (mkadc a c) @ (e p1) '((hex ,e ,f) (add_xx1 ,a (,b) ,c (,d) ,e ,f ,p1 (,p2)))]
[(('h2n f) p2) @ match (mkadd a c) @ (e p1) '((hex ,e ,f) (add_xx0 ,a (,b) ,c (,d) ,e ,f ,p1 (,p2)))]]
[(('h2n (b)) ('hex c (d))) @ match (decaddn (hexdigit->number b) (hexdigit->number d))
[(('hex _ f) p2) @ match (mksuc c) @ (e p1) '((hex ,e ,f) (add_0x1 (,b) ,c (,d) ,e ,f ,p1 (,p2)))]
[(('h2n f) p2) '((hex ,c ,f) (add_0x0 (,b) ,c (,d) ,f (,p2)))]]
[(('hex a (b)) ('h2n (d))) @ match (decaddn (hexdigit->number b) (hexdigit->number d))
[(('hex _ f) p2) @ match (mksuc a) @ (e p1) '((hex ,e ,f) (add_x01 ,a (,b) (,d) ,e ,f ,p1 (,p2)))]
[(('h2n f) p2) '((hex ,a ,f) (add_x00 ,a (,b) (,d) ,f (,p2)))]]
[(('h2n (b)) ('h2n (d))) @ match (decaddn (hexdigit->number b) (hexdigit->number d)) ['(,r ,p) '(,r (,p))]])
--| Raw carry-addition theorem generator: given `a`, `b` in normal form,
--| returns `(c p)` where `p: suc (a + b) = c`
(def mkadc @ match-fn*
[(('hex a (b)) ('hex c (d))) @ match (decadcn (hexdigit->number b) (hexdigit->number d))
[(('hex _ f) p2) @ match (mkadc a c) @ (e p1) '((hex ,e ,f) (adc_xx1 ,a (,b) ,c (,d) ,e ,f ,p1 (,p2)))]
[(('h2n f) p2) @ match (mkadd a c) @ (e p1) '((hex ,e ,f) (adc_xx0 ,a (,b) ,c (,d) ,e ,f ,p1 (,p2)))]]
[(('h2n (b)) ('hex c (d))) @ match (decadcn (hexdigit->number b) (hexdigit->number d))
[(('hex _ f) p2) @ match (mksuc c) @ (e p1) '((hex ,e ,f) (adc_0x1 (,b) ,c (,d) ,e ,f ,p1 (,p2)))]
[(('h2n f) p2) '((hex ,c ,f) (adc_0x0 (,b) ,c (,d) ,f (,p2)))]]
[(('hex a (b)) ('h2n (d))) @ match (decadcn (hexdigit->number b) (hexdigit->number d))
[(('hex _ f) p2) @ match (mksuc a) @ (e p1) '((hex ,e ,f) (adc_x01 ,a (,b) (,d) ,e ,f ,p1 (,p2)))]
[(('h2n f) p2) '((hex ,a ,f) (adc_x00 ,a (,b) (,d) ,f (,p2)))]]
[(('h2n (b)) ('h2n (d))) @ match (decadcn (hexdigit->number b) (hexdigit->number d)) ['(,r ,p) '(,r (,p))]])
--| Addition tactic: usable in refine scripts when the target is `a + b = ?c` (or `suc (a + b) = ?c`),
--| producing a proof and unifying `?c`
(def (addtac refine t) @ match t
[$ ,a + ,b = ,_ $ @ match (mkadd a b) @ (c p) @ refine '{(:verb ,p) : $ ,a + ,b = ,c $}]
[$ suc (,a + ,b) = ,_ $ @ match (mkadc a b) @ (c p) @ refine '{(:verb ,p) : $ suc (,a + ,b) = ,c $}])
};
theorem decb0 (h: $ a + a = b $): $ b0 a = b $ = 'h;
theorem decb1 (h: $ suc (a + a) = b $): $ b1 a = b $ = 'h;
do {
-- Theorem generator for b0 and b1
(def (mkb0 a) @ match (mkadd a a) @ (b p) '(,b (decb0 ,a ,b ,p)))
(def (mkb1 a) @ match (mkadc a a) @ (b p) '(,b (decb1 ,a ,b ,p)))
};
theorem decmul_lem (h1: $ a * b = d $) (h2: $ suc b = c $) (h3: $ d + a = e $): $ a * c = e $ =
'(eqtr3 (muleq2 h2) @ eqtr mulS @ eqtr (addeq1 h1) h3);
do {
-- Defines e.g. theorem decmul4a: $ x4 * xa = x2 :x x8 $;
-- for all a, b <= 15. (decmuln 4 10) returns the pair of the rhs and the theorem
(def decmuln
(def f
@ on-hexstrings @ fn (sa) @ let ([xa (atom-app 'x sa)] [a (hex->number xa)] [xa '(h2n @ ,xa)])
@ on-hexstrings @ fn (sc) @ let ([xc (atom-app 'x sc)] [c (hex->number xc)] [xc '(h2n @ ,xc)])
@ let ([e {a * c}] [xe (->hex e)] [name (atom-app 'decmul sa sc)])
(add-thm! name () () '(eq (mul ,xa ,xc) ,xe) () @ fn ()
@ if {c = 0} '(() (mulx02 ,xa))
@ let ([b {c - 1}] [xb (->hex b)] [d {e - a}] [xd (->hex d)])
'(() (decmul_lem ,xa ,xb ,xc ,xd ,xe
(,(atom-app 'decmul sa (hexstring b)))
(,(decsucn b))
,(hd @ tl @ mkadd xd xa))))
(list xe name))
(fn (a b) ((f a) b)))
};
theorem mul_b1 (h: $ a * b = c $): $ a :x x0 * b = c :x x0 $ =
'(eqtr (muleq1 hex02) @ eqtr mulrass @ eqtr4 (muleq1 h) hex02);
theorem mul_b2 (h: $ a * b = c $): $ a * b :x x0 = c :x x0 $ =
'(eqtr (muleq2 hex02) @ eqtr3 mulass @ eqtr4 (muleq1 h) hex02);
theorem mul_x1x (h1: $ a * c = d $) (h2: $ b * c = e :x f $) (h3: $ d + e = g $): $ a :x b * c = g :x f $ =
'(eqtr addmul @ eqtr (addeq (eqtr mulrass @ muleq1 h1) h2) @ eqtr3 addass @
addeq1 @ eqtr3 addmul @ muleq1 h3);
theorem mul_x10 (h1: $ a * c = d $) (h2: $ b * c = e $): $ a :x b * c = d :x e $ =
'(mul_x1x h1 (eqtr4 h2 hex01) addx02);
theorem mul_x2x (h1: $ a * b = d $) (h2: $ a * c = e :x f $) (h3: $ d + e = g $): $ a * b :x c = g :x f $ =
'(eqtr mulcom @ mul_x1x (eqtr mulcom h1) (eqtr mulcom h2) h3);
theorem mul_x20 (h1: $ a * b = d $) (h2: $ a * c = e $): $ a * b :x c = d :x e $ =
'(mul_x2x h1 (eqtr4 h2 hex01) addx02);
do {
--| Raw multiplication theorem generator: given `a`, `b` in normal form,
--| returns `(c p)` where `p: a * b = c`
(def mkmul @ letrec (
[mkmul-nz @ match-fn*
[('(h2n (x1)) a) '(,a (mulx11 ,a))]
[(a '(h2n (x1))) '(,a (mulx12 ,a))]
[(a ('hex b '(x0))) @ match (mkmul-nz a b) @ (c p) '((hex ,c (x0)) (mul_b2 ,a ,b ,c ,p))]
[(('hex a '(x0)) b) @ match (mkmul-nz a b) @ (c p) '((hex ,c (x0)) (mul_b1 ,a ,b ,c ,p))]
[(a ('hex b c))
@ match (mkmul-nz a b) @ (d p1)
@ match (mkmul a '(h2n ,c))
[(('hex e f) p2) @ match (mkadd d e) @ (g p3)
'((hex ,g ,f) (mul_x2x ,a ,b ,c ,d ,e ,f ,g ,p1 ,p2 ,p3))]
[(('h2n e) p2) '((hex ,d ,e) (mul_x20 ,a ,b ,c ,d ,e ,p1 ,p2))]]
[(('hex a b) c)
@ match (mkmul-nz a c) @ (d p1)
@ match (mkmul '(h2n ,b) c)
[(('hex e f) p2) @ match (mkadd d e) @ (g p3)
'((hex ,g ,f) (mul_x1x ,a ,b ,c ,d ,e ,f ,g ,p1 ,p2 ,p3))]
[(('h2n e) p2) '((hex ,d ,e) (mul_x10 ,a ,b ,c ,d ,e ,p1 ,p2))]]
[(('h2n (a)) ('h2n (b))) @ match (decmuln (hexdigit->number a) (hexdigit->number b)) @ (c p)
'(,c (,p))]]
[mkmul @ match-fn*
[('(h2n (x0)) a) '((h2n (x0)) (mulx01 ,a))]
[(a '(h2n (x0))) '((h2n (x0)) (mulx02 ,a))]
[(e1 e2) (mkmul-nz e1 e2)]])
mkmul)
--| Multiplication tactic: usable in refine scripts when the target is `a * b = ?c`,
--| producing a proof and unifying `?c`
(def (multac refine t) @ match t @ $ ,a + ,b = ,_ $
@ match (mkmul a b) @ (c p) @ refine '{(:verb ,p) : $ ,a * ,b = ,c $})
};
theorem suceql (ha: $ a = a2 $) (h: $ suc a2 = b $): $ suc a = b $ = '(eqtr (suceq ha) h);
theorem addeql (ha: $ a = a2 $) (hb: $ b = b2 $) (h: $ a2 + b2 = c $): $ a + b = c $ = '(eqtr (addeq ha hb) h);
theorem adceql (ha: $ a = a2 $) (hb: $ b = b2 $) (h: $ suc (a2 + b2) = c $):
$ suc (a + b) = c $ = '(eqtr (suceq @ addeq ha hb) h);
theorem muleql (ha: $ a = a2 $) (hb: $ b = b2 $) (h: $ a2 * b2 = c $): $ a * b = c $ = '(eqtr (muleq ha hb) h);
theorem hexeql (ha: $ a = a2 $): $ a :x b = a2 :x b $ = '(hexeq1 ha);
theorem hexeql0 (ha: $ a = x0 $): $ a :x b = b $ = '(eqtr (hexeql ha) hex01);
theorem lteql (ha: $ a = a2 $) (hb: $ b = b2 $) (h: $ a2 < b2 $): $ a < b $ = '(mpbir (lteq ha hb) h);
theorem leeql (ha: $ a = a2 $) (hb: $ b = b2 $) (h: $ a2 <= b2 $): $ a <= b $ = '(mpbir (leeq ha hb) h);
theorem neeql (ha: $ a = a2 $) (hb: $ b = b2 $) (h: $ a2 != b2 $): $ a != b $ = '(mpbir (neeq ha hb) h);
theorem eqeql (ha: $ a = a2 $) (hb: $ b = b2 $) (h: $ a2 = b2 $): $ a = b $ = '(mpbir (eqeq ha hb) h);
theorem b0eql (ha: $ a = a2 $) (h: $ b0 a2 = b $): $ b0 a = b $ = '(eqtr (b0eq ha) h);
theorem b1eql (ha: $ a = a2 $) (h: $ b1 a2 = b $): $ b1 a = b $ = '(eqtr (b1eq ha) h);
do {
(def tohex-map (atom-map!)) (set-merge-strategy tohex-map merge-map)
--| Core numeric evaluation function, extensible using `tohex-map`.
--| Given a numeric expression using `+`, `*`, `suc`, `:x`, ..., it will be evaluated to a
--| (hexadecimal) numeric literal.
--| It will either return a pair `(e2 p)` where `p: e = e2`,
--| or `#undef` meaning that `e` is already normalized
(def (mktohex e) @ match e @ ((? atom? t) . es)
(apply (lookup tohex-map t @ fn () @ error @ string-append "not numeric: " (->string t)) es))
--| Numeric evaluation as a refine script.
(def (to_hex refine t) @ match t @ $ ,a = ,_ $
@ match (mktohex a)
[(b p) @ refine t '{(:verb ,p) : $ ,a = ,b $}]
[#undef @ refine t 'eqid])
(def (try-conv a p) @ if (def? p) p '(,a (eqid ,a)))
(let ([(ins a f) (insert! tohex-map a f)])
(ins 'suc @ match-fn
[('add a b) (def pa (mktohex a)) (def pb (mktohex b))
@ if {(def? pa) or (def? pb)}
(match (try-conv a pa) @ (a2 pa) @ match (try-conv b pb) @ (b2 pb) @ match (mkadc a2 b2) @ (c pc)
'(,c (adceql ,a ,a2 ,b ,b2 ,c ,pa ,pb ,pc)))
(mkadc a b)]
[a @ match (mktohex a)
[(a2 pa) @ match (mksuc a2) @ (b pb) '(,b (suceql ,a ,a2 ,b ,pa ,pb))]
[#undef (mksuc a)]])
(ins 'add @ fn (a b)
(def pa (mktohex a)) (def pb (mktohex b))
@ if {(def? pa) or (def? pb)}
(match (try-conv a pa) @ (a2 pa) @ match (try-conv b pb) @ (b2 pb) @ match (mkadd a2 b2) @ (c pc)
'(,c (addeql ,a ,a2 ,b ,b2 ,c ,pa ,pb ,pc)))
(mkadd a b))
(ins 'mul @ fn (a b)
(def pa (mktohex a)) (def pb (mktohex b))
@ if {(def? pa) or (def? pb)}
(match (try-conv a pa) @ (a2 pa) @ match (try-conv b pb) @ (b2 pb) @ match (mkmul a2 b2) @ (c pc)
'(,c (muleql ,a ,a2 ,b ,b2 ,c ,pa ,pb ,pc)))
(mkmul a b))
(ins 'b0 @ fn (a) @ match (mktohex a)
[(a2 pa) @ match (mkb0 a2) @ (b pb) '(,b (b0eql ,a ,a2 ,b ,pa ,pb))]
[#undef (mkb0 a)])
(ins 'b1 @ fn (a) @ match (mktohex a)
[(a2 pa) @ match (mkb1 a2) @ (b pb) '(,b (b1eql ,a ,a2 ,b ,pa ,pb))]
[#undef (mkb1 a)])
(ins 'c2n mktohex)
(ins 'ch @ fn (a b) @ match a
['(x0) '((h2n ,b) (c2nh2n ,b))]
[_ '((hex (h2n ,a) ,b) (c2nhex ,a ,b))])
(ins 'hex @ fn (a b) @ match a
['(x0) '((h2n ,b) (hex01 ,b))]
[_ @ match (mktohex a)
[(a2 p) @ match a2
['(x0) '((h2n ,b) (hexeql0 ,a ,b ,p))]
[_ '((hex ,a2 ,b) (hexeql ,a ,a2 ,b ,p))]]
[#undef]])
(ins 'h2n @ fn (_))
(for 0 16 @ fn (n) @
ins (dn n) @ fn () '((h2n (,(hexdigit n))) (,(decn n))))
(ins 'd16 @ fn () '((hex (h2n (x1)) (x0)) (h2n10))))
--| Comparison theorem generator: prove a given (in)equality goal (`<`, `<=`, or `=`)
(def (mkcmp e) @ match e
[('lt a b) (def pa (mktohex a)) (def pb (mktohex b))
@ if {(def? pa) or (def? pb)}
(match (try-conv a pa) @ (a2 pa) @ match (try-conv b pb) @ (b2 pb)
'(lteql ,a ,a2 ,b ,b2 ,pa ,pb ,(mkcmphex '(lt ,a2 ,b2))))
(mkcmphex e)]
[('le a b) (def pa (mktohex a)) (def pb (mktohex b))
@ if {(def? pa) or (def? pb)}
(match (try-conv a pa) @ (a2 pa) @ match (try-conv b pb) @ (b2 pb)
'(leeql ,a ,a2 ,b ,b2 ,pa ,pb ,(mkcmphex '(le ,a2 ,b2))))
(mkcmphex e)]
[('ne a b) (def pa (mktohex a)) (def pb (mktohex b))
@ if {(def? pa) or (def? pb)}
(match (try-conv a pa) @ (a2 pa) @ match (try-conv b pb) @ (b2 pb)
'(neeql ,a ,a2 ,b ,b2 ,pa ,pb ,(mkcmphex '(ne ,a2 ,b2))))
(mkcmphex e)]
[('eq a b) (def pa (mktohex a)) (def pb (mktohex b))
(def a2 (if (def? pa) (hd pa) a))
(def b2 (if (def? pb) (hd pb) b))
@ if {a2 == b2}
(match (list pa pb)
[((_ pa) (_ pb)) '(eqtr4i ,a ,a2 ,b ,pa ,pb)]
[((_ pa) #undef) pa]
[(#undef (_ pb)) '(eqcomi ,b ,a ,pb)]
[(#undef #undef) '(eqid ,a)])
(error @ string-append "not equal? " (->string a2) " =?= " (->string b2))])
--| Normalize numeric expressions. Proves theorems like `123 * 321 = 39483`,
--| used as a refine script.
(def (norm_num refine t) @ match t
[('eq a (? mvar?)) @ match (try-conv a @ mktohex a) @ (b p)
@ refine t '{(:verb ,p) : $ ,a = ,b $}]
[_ @ refine t '(:verb ,(mkcmp t))])
};
theorem decdiv (ha: $ a = a2 $) (hb: $ b = b2 $)
(h1: $ b2 * d = m $) (h2: $ m + r = a2 $) (h3: $ r < b2 $): $ a // b = d $ =
'(eqtr (diveq ha hb) @ trud @ anld @ eqdivmod (a1i h3) (a1i @ eqtr (addeq1 h1) h2));
theorem decmod (ha: $ a = a2 $) (hb: $ b = b2 $)
(h1: $ b2 * d = m $) (h2: $ m + r = a2 $) (h3: $ r < b2 $): $ a % b = r $ =
'(eqtr (modeq ha hb) @ trud @ anrd @ eqdivmod (a1i h3) (a1i @ eqtr (addeq1 h1) h2));
theorem decdiv0 (ha: $ a = a2 $) (hb: $ b = x0 $): $ a // b = x0 $ =
'(eqtr (diveq ha @ eqtr4 hb dec0) @ eqtr div0 dec0);
theorem decmod0 (ha: $ a = a2 $) (hb: $ b = x0 $): $ a % b = a2 $ =
'(eqtr (modeq ha @ eqtr4 hb dec0) mod0);
do {
(let ([((divmod zth sth) a b)
@ match (try-conv a @ mktohex a) @ (a2 pa)
@ match (try-conv b @ mktohex b)
[('(h2n (x0)) pb) (zth '(h2n (x0)) a2 '(,a ,a2 ,b ,pa ,pb))]
[(b2 pb)
@ let ([na (hex->number a2)] [nb (hex->number b2)]
[d (->hex {na // nb})] [r (->hex {na % nb})])
@ match (mkmul b2 d) @ (m p1)
@ match (mkadd m r) @ (_ p2)
@ match (mkcmp2 r b2) @ '(< ,p3)
(sth d r '(,a ,a2 ,b ,b2 ,d ,m ,r ,pa ,pb ,p1 ,p2 ,p3))]])
(insert! tohex-map 'div @ divmod
(fn (c _ args) '(,c (decdiv0 . ,args)))
(fn (c _ args) '(,c (decdiv . ,args))))
(insert! tohex-map 'mod @ divmod
(fn (_ c args) '(,c (decmod0 . ,args)))
(fn (_ c args) '(,c (decmod . ,args)))))
};
theorem d0lt3: $ 0 < 3 $ = norm_num;
theorem d0lt4: $ 0 < 4 $ = norm_num;
theorem d1lt3: $ 1 < 3 $ = norm_num;
theorem d1lt4: $ 1 < 4 $ = norm_num;
theorem d1lt8: $ 1 < 8 $ = norm_num;
theorem d2lt3: $ 2 < 3 $ = norm_num;
theorem d2lt4: $ 2 < 4 $ = norm_num;
theorem d2lt8: $ 2 < 8 $ = norm_num;
theorem d3lt4: $ 3 < 4 $ = norm_num;
theorem d4lt6: $ 4 < 6 $ = norm_num;
theorem d4lt7: $ 4 < 7 $ = norm_num;
theorem d4lt8: $ 4 < 8 $ = norm_num;
theorem d6lt7: $ 6 < 7 $ = norm_num;
theorem d8ne0: $ 8 != 0 $ = norm_num;
theorem d8lt16: $ 8 < 16 $ = norm_num;
theorem d8add8: $ 8 + 8 = 16 $ = norm_num;
theorem d16ne0: $ 16 != 0 $ = norm_num;
theorem d2mul2: $ 2 * 2 = 4 $ = norm_num;
theorem pow22lem (h1: $ 2 * a = b $) (h2: $ 2 ^ a = c $): $ 2 ^ b = c * c $ =
'(eqtr3 (poweq2 @ eqtr mulcom h1) @ eqtr powmul @ eqtr (poweq1 h2) pow22);
theorem d2pow2: $ 2 ^ 2 = 4 $ = '(eqtr pow22 d2mul2);
theorem d2mul4: $ 2 * 4 = 8 $ = norm_num;
theorem d4add4: $ 4 + 4 = 8 $ = '(eqtr3 mul21 d2mul4);
theorem d2pow3: $ 2 ^ 3 = 8 $ = '(eqtr powS @ eqtr (muleq2 d2pow2) d2mul4);
theorem d8mul2: $ 8 * 2 = 16 $ = norm_num;
theorem d2pow4: $ 2 ^ 4 = 16 $ = '(eqtr4 (pow22lem d2mul2 d2pow2) ,norm_num);
theorem d2pow8: $ 2 ^ 8 = 16 * 16 $ =
'(eqtr3 (poweq2 d4add4) @ eqtr powadd @ muleq d2pow4 d2pow4);
theorem d2pow8x: $ 2 ^ 8 = ,256 $ = '(eqtr d2pow8 ,to_hex);
theorem d2pow16x: $ 2 ^ 16 = ,0x10000 $ =
'(eqtr3 (poweq2 d8add8) @ eqtr powadd @ eqtr (muleq d2pow8 d2pow8) ,norm_num);
theorem upto4: $ upto 4 = xf $ =
'(mpbi peano2 @ eqtr sucupto @ eqtr4 d2pow4 ,norm_num);
theorem upto16: $ upto 16 = ,0xffff $ =
'(mpbi peano2 @ eqtr sucupto @ eqtr4 d2pow16x ,norm_num);
theorem xltmul16 (h: $ a < b $): $ a :x x < b * 16 $ =
'(ltletr (mpbi ltadd2 h2nlt) @ mpbi (leeq1 mulS1) @ lemul1a h);
theorem xlt16pow1: $ h2n x < 16 ^ suc k $ =
'(ltletr h2nlt @ mpbi (leeq1 pow12) @ lepow2a d16ne0 le11S);
theorem xlt16powS (h: $ a < 16 ^ k $): $ a :x x < 16 ^ suc k $ =
'(mpbir (lteq2 powS2) @ xltmul16 h);
theorem hexshl4: $ a :x b = shl a 4 + b $ = '(addeq1 @ muleq2 @ eqcom d2pow4);
theorem shrhex4: $ shr (a :x b) 4 = a $ =
'(eqtr (shreq1 hexshl4) @ shrshladdid @ mpbir (lteq2 d2pow4) h2nlt);
theorem x16powS (h: $ 16 ^ k = a $): $ 16 ^ suc k = a :x x0 $ =
'(eqtr powS2 @ eqtr4 (muleq1 h) hex02);
theorem x2powS (h: $ a = 2 ^ k $): $ a :x x0 = 2 ^ (k + 4) $ =
'(eqtr hex02 @ eqtr4 (muleq1 h) @ eqtr powadd (muleq2 d2pow4));
do {
-- Defines e.g. theorem d5half: $ 5 = b1 2 $; and x5half: $ x5 = b1 x2 $; for all n <= 16
(def (decnhalf n) (atom-app 'd n 'half))
(def (hexnhalf n) (atom-app 'x n 'half))
(for 0 16 @ fn (a)
(def b {a // 2})
(def (f name g)
(def stmt '(eq ,(g a) (,(if {{b * 2} = a} 'b0 'b1) ,(g b))))
(add-thm! (name a) () () stmt () @ fn () '(() ,(mkcmp stmt))))
(f decnhalf @ fn (a) '(,(dn a)))
(f hexnhalf @ fn (a) '(h2n (,(hexdigit a)))))
};
do {
(def (->zhex n)
@ if {n > 0} '(b0 ,(->hex n))
@ if {n = 0} '(d0) '(b1 ,(->hex (bnot n))))
};