forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
UserCountsPerRegionLambdaIntegrationTest.java
155 lines (136 loc) · 7.64 KB
/
UserCountsPerRegionLambdaIntegrationTest.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.examples.streams.kafka.EmbeddedSingleNodeKafkaCluster;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.LongDeserializer;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.test.TestUtils;
import org.junit.BeforeClass;
import org.junit.ClassRule;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
import static org.assertj.core.api.Assertions.assertThat;
/**
* End-to-end integration test that demonstrates how aggregations on a KTable produce the expected
* results even though new data is continuously arriving in the KTable's input topic in Kafka.
*
* The use case we implement is to continuously compute user counts per region based on location
* updates that are sent to a Kafka topic. What we want to achieve is to always have the
* latest and correct user counts per region even as users keep moving between regions while our
* stream processing application is running (imagine, for example, that we are tracking passengers
* on air planes). More concretely, whenever a new messages arrives in the Kafka input topic that
* indicates a user moved to a new region, we want the effect of 1) reducing the user's previous
* region by 1 count and 2) increasing the user's new region by 1 count.
*
* You could use the code below, for example, to create a real-time heat map of the world where
* colors denote the current number of users in each area of the world.
*
* This example is related but not equivalent to {@link UserRegionLambdaExample}.
*
* Note: This example uses lambda expressions and thus works with Java 8+ only.
*/
public class UserCountsPerRegionLambdaIntegrationTest {
@ClassRule
public static final EmbeddedSingleNodeKafkaCluster CLUSTER = new EmbeddedSingleNodeKafkaCluster();
private static final String inputTopic = "input-topic";
private static final String outputTopic = "output-topic";
@BeforeClass
public static void startKafkaCluster() throws Exception {
CLUSTER.createTopic(inputTopic);
CLUSTER.createTopic(outputTopic);
}
@Test
public void shouldCountUsersPerRegion() throws Exception {
// Input: Region per user (multiple records allowed per user).
List<KeyValue<String, String>> userRegionRecords = Arrays.asList(
// This first record for Alice tells us that she is currently in Asia.
new KeyValue<>("alice", "asia"),
// First record for Bob.
new KeyValue<>("bob", "europe"),
// This second record for Alice tells us that her latest location is Europe. Combining the
// information in this record with the previous record for Alice, we know that she has moved
// from Asia to Europe; in other words, it's a location update for Alice.
new KeyValue<>("alice", "europe"),
// Second record for Bob, who moved from Europe to Asia (i.e. the opposite direction of Alice).
new KeyValue<>("bob", "asia")
);
List<KeyValue<String, Long>> expectedUsersPerRegion = Arrays.asList(
new KeyValue<>("europe", 1L), // in the end, Alice is in europe
new KeyValue<>("asia", 1L) // in the end, Bob is in asia
);
//
// Step 1: Configure and start the processor topology.
//
final Serde<String> stringSerde = Serdes.String();
final Serde<Long> longSerde = Serdes.Long();
Properties streamsConfiguration = new Properties();
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "user-regions-lambda-integration-test");
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
// The commit interval for flushing records to state stores and downstream must be lower than
// this integration test's timeout (30 secs) to ensure we observe the expected processing results.
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10 * 1000);
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Use a temporary directory for storing state, which will be automatically removed after the test.
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory().getAbsolutePath());
StreamsBuilder builder = new StreamsBuilder();
KTable<String, String> userRegionsTable = builder.table(inputTopic);
KTable<String, Long> usersPerRegionTable = userRegionsTable
// no need to specify explicit serdes because the resulting key and value types match our default serde settings
.groupBy((userId, region) -> KeyValue.pair(region, region))
.count();
usersPerRegionTable.toStream().to(outputTopic, Produced.with(stringSerde, longSerde));
KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfiguration);
streams.start();
//
// Step 2: Publish user-region information.
//
Properties userRegionsProducerConfig = new Properties();
userRegionsProducerConfig.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
userRegionsProducerConfig.put(ProducerConfig.ACKS_CONFIG, "all");
userRegionsProducerConfig.put(ProducerConfig.RETRIES_CONFIG, 0);
userRegionsProducerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
userRegionsProducerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
IntegrationTestUtils.produceKeyValuesSynchronously(inputTopic, userRegionRecords, userRegionsProducerConfig);
//
// Step 3: Verify the application's output data.
//
Properties consumerConfig = new Properties();
consumerConfig.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
consumerConfig.put(ConsumerConfig.GROUP_ID_CONFIG, "user-regions-lambda-integration-test-standard-consumer");
consumerConfig.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
consumerConfig.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
consumerConfig.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, LongDeserializer.class);
List<KeyValue<String, Long>> actualClicksPerRegion = IntegrationTestUtils.waitUntilMinKeyValueRecordsReceived(consumerConfig,
outputTopic, expectedUsersPerRegion.size());
streams.close();
assertThat(actualClicksPerRegion).containsExactlyElementsOf(expectedUsersPerRegion);
}
}