forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
MapFunctionScalaExample.scala
153 lines (138 loc) · 6.6 KB
/
MapFunctionScalaExample.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams
import java.util.Properties
import org.apache.kafka.common.serialization._
import org.apache.kafka.streams._
import org.apache.kafka.streams.kstream.{KStream, Produced}
/**
* Demonstrates how to perform simple, state-less transformations via map functions.
* Same as [[MapFunctionLambdaExample]] but in Scala.
*
* Use cases include e.g. basic data sanitization, data anonymization by obfuscating sensitive data
* fields (such as personally identifiable information aka PII). This specific example reads
* incoming text lines and converts each text line to all-uppercase.
*
* Requires a version of Scala that supports Java 8 and SAM / Java lambda (e.g. Scala 2.11 with
* `-Xexperimental` compiler flag, or 2.12).
*
* HOW TO RUN THIS EXAMPLE
*
* 1) Start Zookeeper and Kafka.
* Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
*
* 2) Create the input and output topics used by this example.
*
* {{{
* $ bin/kafka-topics --create --topic TextLinesTopic --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic UppercasedTextLinesTopic --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic OriginalAndUppercasedTopic --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* }}}
*
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be
* `bin/kafka-topics.sh ...`.
*
* 3) Start this example application either in your IDE or on the command line.
*
* If via the command line please refer to
* <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
*
* {{{
* $ java -cp target/kafka-streams-examples-4.0.0-SNAPSHOT-standalone.jar io.confluent.examples.streams.MapFunctionScalaExample
* }}}
*
* 4) Write some input data to the source topics (e.g. via `kafka-console-producer`. The already
* running example application (step 3) will automatically process this input data and write the
* results to the output topics.
*
* {{{
* # Start the console producer. You can then enter input data by writing some line of text,
* # followed by ENTER:
* #
* # hello kafka streams<ENTER>
* # all streams lead to kafka<ENTER>
* #
* # Every line you enter will become the value of a single Kafka message.
* $ bin/kafka-console-producer --broker-list localhost:9092 --topic TextLinesTopic
* }}}
*
* 5) Inspect the resulting data in the output topics, e.g. via `kafka-console-consumer`.
*
* {{{
* $ bin/kafka-console-consumer --new-consumer --bootstrap-server localhost:9092 --topic UppercasedTextLinesTopic --from-beginning
* $ bin/kafka-console-consumer --new-consumer --bootstrap-server localhost:9092 --topic OriginalAndUppercasedTopic --from-beginning
* }}}
*
* You should see output data similar to:
* {{{
* HELLO KAFKA STREAMS
* ALL STREAMS LEAD TO KAFKA
* }}}
*
* 6) Once you're done with your experiments, you can stop this example via `Ctrl-C`. If needed,
* also stop the Kafka broker (`Ctrl-C`), and only then stop the ZooKeeper instance (`Ctrl-C`).
*/
object MapFunctionScalaExample {
def main(args: Array[String]) {
val bootstrapServers = if (args.length > 0) args(0) else "localhost:9092"
val builder = new StreamsBuilder
val streamingConfig = {
val settings = new Properties
settings.put(StreamsConfig.APPLICATION_ID_CONFIG, "map-function-scala-example")
settings.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers)
// Specify default (de)serializers for record keys and for record values.
settings.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.ByteArray.getClass.getName)
settings.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String.getClass.getName)
settings
}
val stringSerde: Serde[String] = Serdes.String()
// Read the input Kafka topic into a KStream instance.
val textLines: KStream[Array[Byte], String] = builder.stream("TextLinesTopic")
// Variant 1: using `mapValues`
val uppercasedWithMapValues: KStream[Array[Byte], String] = textLines.mapValues(_.toUpperCase())
// Write (i.e. persist) the results to a new Kafka topic called "UppercasedTextLinesTopic".
//
// In this case we can rely on the default serializers for keys and values because their data
// types did not change, i.e. we only need to provide the name of the output topic.
uppercasedWithMapValues.to("UppercasedTextLinesTopic")
// We are using implicit conversions to convert Scala's `Tuple2` into Kafka Streams' `KeyValue`.
// This allows us to write streams transformations as, for example:
//
// map((key, value) => (key, value.toUpperCase())
//
// instead of the more verbose
//
// map((key, value) => new KeyValue(key, value.toUpperCase())
//
import KeyValueImplicits._
// Variant 2: using `map`, modify value only (equivalent to variant 1)
val uppercasedWithMap: KStream[Array[Byte], String] = textLines.map((key, value) => (key, value.toUpperCase()))
// Variant 3: using `map`, modify both key and value
//
// Note: Whether, in general, you should follow this artificial example and store the original
// value in the key field is debatable and depends on your use case. If in doubt, don't
// do it.
val originalAndUppercased: KStream[String, String] = textLines.map((key, value) => (value, value.toUpperCase()))
// Write the results to a new Kafka topic "OriginalAndUppercasedTopic".
//
// In this case we must explicitly set the correct serializers because the default serializers
// (cf. streaming configuration) do not match the type of this particular KStream instance.
originalAndUppercased.to("OriginalAndUppercasedTopic", Produced.`with`(stringSerde, stringSerde))
val stream: KafkaStreams = new KafkaStreams(builder.build(), streamingConfig)
stream.start()
}
}