forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
SumLambdaExample.java
145 lines (136 loc) · 7.47 KB
/
SumLambdaExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import java.util.Properties;
/**
* Demonstrates how to use `reduce` to sum numbers. See {@code SumLambdaIntegrationTest} for an
* end-to-end example.
* <p>
* Note: This example uses lambda expressions and thus works with Java 8+ only.
* <p>
* <br>
* HOW TO RUN THIS EXAMPLE
* <p>
* 1) Start Zookeeper and Kafka. Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
* <p>
* 2) Create the input and output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic numbers-topic \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic sum-of-odd-numbers-topic \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be {@code `bin/kafka-topics.sh ...}.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-4.0.0-SNAPSHOT-standalone.jar io.confluent.examples.streams.SumLambdaExample
* }
* </pre>
* 4) Write some input data to the source topic (e.g. via {@link SumLambdaExampleDriver}). The
* already running example application (step 3) will automatically process this input data and write
* the results to the output topic.
* <pre>
* {@code
* # Here: Write input data using the example driver. Once the driver has stopped generating data,
* # you can terminate it via `Ctrl-C`.
* $ java -cp target/kafka-streams-examples-4.0.0-SNAPSHOT-standalone.jar io.confluent.examples.streams.SumLambdaExampleDriver
* }
* </pre>
* 5) Inspect the resulting data in the output topics, e.g. via {@code kafka-console-consumer}.
* <pre>
* {@code
* $ bin/kafka-console-consumer --topic sum-of-odd-numbers-topic --from-beginning \
* --new-consumer --bootstrap-server localhost:9092 \
* --property value.deserializer=org.apache.kafka.common.serialization.IntegerDeserializer
* }</pre>
* You should see output data similar to:
* <pre>
* {@code
* 2500
* }</pre>
* 6) Once you're done with your experiments, you can stop this example via {@code Ctrl-C}. If needed,
* also stop the Kafka broker ({@code Ctrl-C}), and only then stop the ZooKeeper instance ({@code Ctrl-C}).
*/
public class SumLambdaExample {
static final String SUM_OF_ODD_NUMBERS_TOPIC = "sum-of-odd-numbers-topic";
static final String NUMBERS_TOPIC = "numbers-topic";
public static void main(final String[] args) throws Exception {
final String bootstrapServers = args.length > 0 ? args[0] : "localhost:9092";
final Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "sum-lambda-example");
streamsConfiguration.put(StreamsConfig.CLIENT_ID_CONFIG, "sum-lambda-example-client");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
// Specify default (de)serializers for record keys and for record values.
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.Integer().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.Integer().getClass().getName());
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, "/tmp/kafka-streams");
// Records should be flushed every 10 seconds. This is less than the default
// in order to keep this example interactive.
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10 * 1000);
final StreamsBuilder builder = new StreamsBuilder();
// We assume the input topic contains records where the values are Integers.
// We don't really care about the keys of the input records; for simplicity, we assume them
// to be Integers, too, because we will re-key the stream later on, and the new key will be
// of type Integer.
final KStream<Integer, Integer> input = builder.stream(NUMBERS_TOPIC);
final KTable<Integer, Integer> sumOfOddNumbers = input
// We are only interested in odd numbers.
.filter((k, v) -> v % 2 != 0)
// We want to compute the total sum across ALL numbers, so we must re-key all records to the
// same key. This re-keying is required because in Kafka Streams a data record is always a
// key-value pair, and KStream aggregations such as `reduce` operate on a per-key basis.
// The actual new key (here: `1`) we pick here doesn't matter as long it is the same across
// all records.
.selectKey((k, v) -> 1)
// no need to specify explicit serdes because the resulting key and value types match our default serde settings
.groupByKey()
// Add the numbers to compute the sum.
.reduce((v1, v2) -> v1 + v2);
sumOfOddNumbers.toStream().to(SUM_OF_ODD_NUMBERS_TOPIC);
final KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfiguration);
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// http://docs.confluent.io/current/streams/developer-guide.html#application-reset-tool).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
}