-
Notifications
You must be signed in to change notification settings - Fork 71
/
custom_load_weights.py
523 lines (459 loc) · 21.3 KB
/
custom_load_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
"""
EfficientPose (c) by Steinbeis GmbH & Co. KG für Technologietransfer
Haus der Wirtschaft, Willi-Bleicher-Straße 19, 70174 Stuttgart, Germany
Yannick Bukschat: [email protected]
Marcus Vetter: [email protected]
EfficientPose is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License.
The license can be found in the LICENSE file in the root directory of this source tree
or at http://creativecommons.org/licenses/by-nc/4.0/.
---------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------
Based on:
Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import h5py
import numpy as np
from tensorflow.python.keras import backend as K
def custom_load_weights(filepath, layers, skip_mismatch):
"""
Function wrapper for the tf keras 2.1 load_weights function. We needed to include this due to the missing 'skip_mismatch' argument which caused problems when using pretrained weights with different number of classes (e.g. COCO)
Args:
filepath: Path to the weights file
layers: List of layers for which to load weights
skip_mismatch: Boolean indicating if weights loading should be skipped for a layer if the shape from the layer in the list and weight file does not match
"""
with h5py.File(filepath, 'r') as f:
if 'layer_names' not in f.attrs and 'model_weights' in f:
f = f['model_weights']
load_weights_from_hdf5_group_by_name(f, layers, skip_mismatch = skip_mismatch)
#copied and adapted from https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/saving/hdf5_format.py
def load_weights_from_hdf5_group_by_name(
f, layers, skip_mismatch=False):
"""Implements name-based weight loading.
(instead of topological weight loading).
Layers that have no matching name are skipped.
Arguments:
f: A pointer to a HDF5 group.
layers: a list of target layers.
skip_mismatch: Boolean, whether to skip loading of layers
where there is a mismatch in the number of weights,
or a mismatch in the shape of the weights.
Raises:
ValueError: in case of mismatch between provided layers
and weights file and skip_match=False.
"""
if 'keras_version' in f.attrs:
original_keras_version = f.attrs['keras_version'].decode('utf8')
# original_keras_version = f.attrs['keras_version']
else:
original_keras_version = '1'
if 'backend' in f.attrs:
original_backend = f.attrs['backend'].decode('utf8')
# original_backend = f.attrs['backend']
else:
original_backend = None
# New file format.
layer_names = load_attributes_from_hdf5_group(f, 'layer_names')
# Reverse index of layer name to list of layers with name.
index = {}
for layer in layers:
if layer.name:
index.setdefault(layer.name, []).append(layer)
# We batch weight value assignments in a single backend call
# which provides a speedup in TensorFlow.
weight_value_tuples = []
for k, name in enumerate(layer_names):
g = f[name]
weight_names = load_attributes_from_hdf5_group(g, 'weight_names')
weight_values = [np.asarray(g[weight_name]) for weight_name in weight_names]
if not name in index:
print("\n\nWARNING: Layer {} could not be found!".format(name))
for layer in index.get(name, []):
symbolic_weights = _legacy_weights(layer)
weight_values = preprocess_weights_for_loading(
layer, weight_values, original_keras_version, original_backend)
if len(weight_values) != len(symbolic_weights):
if skip_mismatch:
print('Skipping loading of weights for '
'layer {}'.format(layer.name) + ' due to mismatch '
'in number of weights ({} vs {}).'.format(
len(symbolic_weights), len(weight_values)))
continue
raise ValueError('Layer #' + str(k) + ' (named "' + layer.name +
'") expects ' + str(len(symbolic_weights)) +
' weight(s), but the saved weights' + ' have ' +
str(len(weight_values)) + ' element(s).')
# Set values.
for i in range(len(weight_values)):
if K.int_shape(symbolic_weights[i]) != weight_values[i].shape:
if skip_mismatch:
print('Skipping loading of weights for '
'layer {}'.format(layer.name) + ' due to '
'mismatch in shape ({} vs {}).'.format(
symbolic_weights[i].shape,
weight_values[i].shape))
continue
raise ValueError('Layer #' + str(k) +' (named "' + layer.name +
'"), weight ' + str(symbolic_weights[i]) +
' has shape {}'.format(K.int_shape(
symbolic_weights[i])) +
', but the saved weight has shape ' +
str(weight_values[i].shape) + '.')
else:
weight_value_tuples.append((symbolic_weights[i], weight_values[i]))
K.batch_set_value(weight_value_tuples)
def load_attributes_from_hdf5_group(group, name):
"""Loads attributes of the specified name from the HDF5 group.
This method deals with an inherent problem
of HDF5 file which is not able to store
data larger than HDF5_OBJECT_HEADER_LIMIT bytes.
Arguments:
group: A pointer to a HDF5 group.
name: A name of the attributes to load.
Returns:
data: Attributes data.
"""
if name in group.attrs:
data = [n.decode('utf8') for n in group.attrs[name]]
# data = [n for n in group.attrs[name]]
else:
data = []
chunk_id = 0
while '%s%d' % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('utf8') for n in group.attrs['%s%d' % (name, chunk_id)]])
# [n for n in group.attrs['%s%d' % (name, chunk_id)]])
chunk_id += 1
return data
def _legacy_weights(model):
"""DO NOT USE.
For legacy reason, the model.weights was in the order of
[self.trainable_weights + self.non_trainable_weights], and this order was
used for preserving the weights in h5 format. The new order of model.weights
are the same as model.get_weights() which is more intuitive for user. To
keep supporting the existing saved h5 file, this method should be used to
save/load weights. In future version, we will delete this method and
introduce a breaking change for h5 and stay with the new order for weights.
Args:
model: a model or layer instance.
Returns:
A list of variables with the order of trainable_weights, followed by
non_trainable_weights.
"""
return model.trainable_weights + model.non_trainable_weights
def preprocess_weights_for_loading(layer,
weights,
original_keras_version=None,
original_backend=None):
"""Preprocess layer weights between different Keras formats.
Converts layers weights from Keras 1 format to Keras 2 and also weights of
CuDNN layers in Keras 2.
Arguments:
layer: Layer instance.
weights: List of weights values (Numpy arrays).
original_keras_version: Keras version for the weights, as a string.
original_backend: Keras backend the weights were trained with,
as a string.
Returns:
A list of weights values (Numpy arrays).
"""
def convert_nested_bidirectional(weights):
"""Converts layers nested in `Bidirectional` wrapper.
This function uses `preprocess_weights_for_loading()` for converting
layers.
Arguments:
weights: List of weights values (Numpy arrays).
Returns:
A list of weights values (Numpy arrays).
"""
num_weights_per_layer = len(weights) // 2
forward_weights = preprocess_weights_for_loading(
layer.forward_layer, weights[:num_weights_per_layer],
original_keras_version, original_backend)
backward_weights = preprocess_weights_for_loading(
layer.backward_layer, weights[num_weights_per_layer:],
original_keras_version, original_backend)
return forward_weights + backward_weights
def convert_nested_time_distributed(weights):
"""Converts layers nested in `TimeDistributed` wrapper.
This function uses `preprocess_weights_for_loading()` for converting nested
layers.
Arguments:
weights: List of weights values (Numpy arrays).
Returns:
A list of weights values (Numpy arrays).
"""
return preprocess_weights_for_loading(
layer.layer, weights, original_keras_version, original_backend)
def convert_nested_model(weights):
"""Converts layers nested in `Model` or `Sequential`.
This function uses `preprocess_weights_for_loading()` for converting nested
layers.
Arguments:
weights: List of weights values (Numpy arrays).
Returns:
A list of weights values (Numpy arrays).
"""
trainable_weights = weights[:len(layer.trainable_weights)]
non_trainable_weights = weights[len(layer.trainable_weights):]
new_trainable_weights = []
new_non_trainable_weights = []
for sublayer in layer.layers:
num_trainable_weights = len(sublayer.trainable_weights)
num_non_trainable_weights = len(sublayer.non_trainable_weights)
if sublayer.weights:
preprocessed = preprocess_weights_for_loading(
layer=sublayer,
weights=(trainable_weights[:num_trainable_weights] +
non_trainable_weights[:num_non_trainable_weights]),
original_keras_version=original_keras_version,
original_backend=original_backend)
new_trainable_weights.extend(preprocessed[:num_trainable_weights])
new_non_trainable_weights.extend(preprocessed[num_trainable_weights:])
trainable_weights = trainable_weights[num_trainable_weights:]
non_trainable_weights = non_trainable_weights[
num_non_trainable_weights:]
return new_trainable_weights + new_non_trainable_weights
# Convert layers nested in Bidirectional/Model/Sequential.
# Both transformation should be ran for both Keras 1->2 conversion
# and for conversion of CuDNN layers.
if layer.__class__.__name__ == 'Bidirectional':
weights = convert_nested_bidirectional(weights)
if layer.__class__.__name__ == 'TimeDistributed':
weights = convert_nested_time_distributed(weights)
elif layer.__class__.__name__ in ['Model', 'Sequential']:
weights = convert_nested_model(weights)
if original_keras_version == '1':
if layer.__class__.__name__ == 'TimeDistributed':
weights = preprocess_weights_for_loading(
layer.layer, weights, original_keras_version, original_backend)
if layer.__class__.__name__ == 'Conv1D':
shape = weights[0].shape
# Handle Keras 1.1 format
if shape[:2] != (layer.kernel_size[0], 1) or shape[3] != layer.filters:
# Legacy shape:
# (filters, input_dim, filter_length, 1)
assert shape[0] == layer.filters and shape[2:] == (layer.kernel_size[0],
1)
weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
weights[0] = weights[0][:, 0, :, :]
if layer.__class__.__name__ == 'Conv2D':
if layer.data_format == 'channels_first':
# old: (filters, stack_size, kernel_rows, kernel_cols)
# new: (kernel_rows, kernel_cols, stack_size, filters)
weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
if layer.__class__.__name__ == 'Conv2DTranspose':
if layer.data_format == 'channels_last':
# old: (kernel_rows, kernel_cols, stack_size, filters)
# new: (kernel_rows, kernel_cols, filters, stack_size)
weights[0] = np.transpose(weights[0], (0, 1, 3, 2))
if layer.data_format == 'channels_first':
# old: (filters, stack_size, kernel_rows, kernel_cols)
# new: (kernel_rows, kernel_cols, filters, stack_size)
weights[0] = np.transpose(weights[0], (2, 3, 0, 1))
if layer.__class__.__name__ == 'Conv3D':
if layer.data_format == 'channels_first':
# old: (filters, stack_size, ...)
# new: (..., stack_size, filters)
weights[0] = np.transpose(weights[0], (2, 3, 4, 1, 0))
if layer.__class__.__name__ == 'GRU':
if len(weights) == 9:
kernel = np.concatenate([weights[0], weights[3], weights[6]], axis=-1)
recurrent_kernel = np.concatenate(
[weights[1], weights[4], weights[7]], axis=-1)
bias = np.concatenate([weights[2], weights[5], weights[8]], axis=-1)
weights = [kernel, recurrent_kernel, bias]
if layer.__class__.__name__ == 'LSTM':
if len(weights) == 12:
# old: i, c, f, o
# new: i, f, c, o
kernel = np.concatenate(
[weights[0], weights[6], weights[3], weights[9]], axis=-1)
recurrent_kernel = np.concatenate(
[weights[1], weights[7], weights[4], weights[10]], axis=-1)
bias = np.concatenate(
[weights[2], weights[8], weights[5], weights[11]], axis=-1)
weights = [kernel, recurrent_kernel, bias]
if layer.__class__.__name__ == 'ConvLSTM2D':
if len(weights) == 12:
kernel = np.concatenate(
[weights[0], weights[6], weights[3], weights[9]], axis=-1)
recurrent_kernel = np.concatenate(
[weights[1], weights[7], weights[4], weights[10]], axis=-1)
bias = np.concatenate(
[weights[2], weights[8], weights[5], weights[11]], axis=-1)
if layer.data_format == 'channels_first':
# old: (filters, stack_size, kernel_rows, kernel_cols)
# new: (kernel_rows, kernel_cols, stack_size, filters)
kernel = np.transpose(kernel, (2, 3, 1, 0))
recurrent_kernel = np.transpose(recurrent_kernel, (2, 3, 1, 0))
weights = [kernel, recurrent_kernel, bias]
conv_layers = ['Conv1D', 'Conv2D', 'Conv3D', 'Conv2DTranspose', 'ConvLSTM2D']
if layer.__class__.__name__ in conv_layers:
if original_backend == 'theano':
weights[0] = convert_kernel(weights[0])
if layer.__class__.__name__ == 'ConvLSTM2D':
weights[1] = convert_kernel(weights[1])
if K.int_shape(layer.weights[0]) != weights[0].shape:
weights[0] = np.transpose(weights[0], (3, 2, 0, 1))
if layer.__class__.__name__ == 'ConvLSTM2D':
weights[1] = np.transpose(weights[1], (3, 2, 0, 1))
# convert CuDNN layers
return _convert_rnn_weights(layer, weights)
def _convert_rnn_weights(layer, weights):
"""Converts weights for RNN layers between native and CuDNN format.
Input kernels for each gate are transposed and converted between Fortran
and C layout, recurrent kernels are transposed. For LSTM biases are summed/
split in half, for GRU biases are reshaped.
Weights can be converted in both directions between `LSTM` and`CuDNNSLTM`
and between `CuDNNGRU` and `GRU(reset_after=True)`. Default `GRU` is not
compatible with `CuDNNGRU`.
For missing biases in `LSTM`/`GRU` (`use_bias=False`) no conversion is made.
Arguments:
layer: Target layer instance.
weights: List of source weights values (input kernels, recurrent
kernels, [biases]) (Numpy arrays).
Returns:
A list of converted weights values (Numpy arrays).
Raises:
ValueError: for incompatible GRU layer/weights or incompatible biases
"""
def transform_kernels(kernels, func, n_gates):
"""Transforms kernel for each gate separately using given function.
Arguments:
kernels: Stacked array of kernels for individual gates.
func: Function applied to kernel of each gate.
n_gates: Number of gates (4 for LSTM, 3 for GRU).
Returns:
Stacked array of transformed kernels.
"""
return np.hstack([func(k) for k in np.hsplit(kernels, n_gates)])
def transpose_input(from_cudnn):
"""Makes a function that transforms input kernels from/to CuDNN format.
It keeps the shape, but changes between the layout (Fortran/C). Eg.:
```
Keras CuDNN
[[0, 1, 2], <---> [[0, 2, 4],
[3, 4, 5]] [1, 3, 5]]
```
It can be passed to `transform_kernels()`.
Arguments:
from_cudnn: `True` if source weights are in CuDNN format, `False`
if they're in plain Keras format.
Returns:
Function that converts input kernel to the other format.
"""
order = 'F' if from_cudnn else 'C'
def transform(kernel):
return kernel.T.reshape(kernel.shape, order=order)
return transform
target_class = layer.__class__.__name__
# convert the weights between CuDNNLSTM and LSTM
if target_class in ['LSTM', 'CuDNNLSTM'] and len(weights) == 3:
# determine if we're loading a CuDNNLSTM layer
# from the number of bias weights:
# CuDNNLSTM has (units * 8) weights; while LSTM has (units * 4)
# if there's no bias weight in the file, skip this conversion
units = weights[1].shape[0]
bias_shape = weights[2].shape
n_gates = 4
if bias_shape == (2 * units * n_gates,):
source = 'CuDNNLSTM'
elif bias_shape == (units * n_gates,):
source = 'LSTM'
else:
raise ValueError('Invalid bias shape: ' + str(bias_shape))
def convert_lstm_weights(weights, from_cudnn=True):
"""Converts the weights between CuDNNLSTM and LSTM.
Arguments:
weights: Original weights.
from_cudnn: Indicates whether original weights are from CuDNN layer.
Returns:
Updated weights compatible with LSTM.
"""
# Transpose (and reshape) input and recurrent kernels
kernels = transform_kernels(weights[0], transpose_input(from_cudnn),
n_gates)
recurrent_kernels = transform_kernels(weights[1], lambda k: k.T, n_gates)
if from_cudnn:
# merge input and recurrent biases into a single set
biases = np.sum(np.split(weights[2], 2, axis=0), axis=0)
else:
# Split single set of biases evenly to two sets. The way of
# splitting doesn't matter as long as the two sets sum is kept.
biases = np.tile(0.5 * weights[2], 2)
return [kernels, recurrent_kernels, biases]
if source != target_class:
weights = convert_lstm_weights(weights, from_cudnn=source == 'CuDNNLSTM')
# convert the weights between CuDNNGRU and GRU(reset_after=True)
if target_class in ['GRU', 'CuDNNGRU'] and len(weights) == 3:
# We can determine the source of the weights from the shape of the bias.
# If there is no bias we skip the conversion since
# CuDNNGRU always has biases.
units = weights[1].shape[0]
bias_shape = weights[2].shape
n_gates = 3
def convert_gru_weights(weights, from_cudnn=True):
"""Converts the weights between CuDNNGRU and GRU.
Arguments:
weights: Original weights.
from_cudnn: Indicates whether original weights are from CuDNN layer.
Returns:
Updated weights compatible with GRU.
"""
kernels = transform_kernels(weights[0], transpose_input(from_cudnn),
n_gates)
recurrent_kernels = transform_kernels(weights[1], lambda k: k.T, n_gates)
biases = np.array(weights[2]).reshape((2, -1) if from_cudnn else -1)
return [kernels, recurrent_kernels, biases]
if bias_shape == (2 * units * n_gates,):
source = 'CuDNNGRU'
elif bias_shape == (2, units * n_gates):
source = 'GRU(reset_after=True)'
elif bias_shape == (units * n_gates,):
source = 'GRU(reset_after=False)'
else:
raise ValueError('Invalid bias shape: ' + str(bias_shape))
if target_class == 'CuDNNGRU':
target = 'CuDNNGRU'
elif layer.reset_after:
target = 'GRU(reset_after=True)'
else:
target = 'GRU(reset_after=False)'
# only convert between different types
if source != target:
types = (source, target)
if 'GRU(reset_after=False)' in types:
raise ValueError('%s is not compatible with %s' % types)
if source == 'CuDNNGRU':
weights = convert_gru_weights(weights, from_cudnn=True)
elif source == 'GRU(reset_after=True)':
weights = convert_gru_weights(weights, from_cudnn=False)
return weights
def convert_kernel(kernel):
"""Converts a Numpy kernel matrix from Theano format to TensorFlow format.
Also works reciprocally, since the transformation is its own inverse.
Arguments:
kernel: Numpy array (3D, 4D or 5D).
Returns:
The converted kernel.
Raises:
ValueError: in case of invalid kernel shape or invalid data_format.
"""
kernel = np.asarray(kernel)
if not 3 <= kernel.ndim <= 5:
raise ValueError('Invalid kernel shape:', kernel.shape)
slices = [slice(None, None, -1) for _ in range(kernel.ndim)]
no_flip = (slice(None, None), slice(None, None))
slices[-2:] = no_flip
return np.copy(kernel[slices])