forked from NanoComp/meep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
two_dimensional.cpp
348 lines (308 loc) · 12.3 KB
/
two_dimensional.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/* Copyright (C) 2005-2023 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <meep.hpp>
using namespace meep;
using std::complex;
double one(const vec &) { return 1.0; }
double targets(const vec &pt) {
const double r = sqrt(pt.x() * pt.x() + pt.y() * pt.y());
double dr = r;
while (dr > 1)
dr -= 1;
if (dr > 0.7001) return 12.0;
return 1.0;
}
#if MEEP_SINGLE
static const double tol = 1e-3, thresh = 1e-5;
#else
static const double tol = 1e-11, thresh = 1e-5;
#endif
int compare(double a, double b, const char *n) {
if (fabs(a - b) > fabs(b) * tol && fabs(b) > thresh) {
master_printf("%s differs by\t%g out of\t%g\n", n, a - b, b);
master_printf("This gives a fractional error of %g\n", fabs(a - b) / fabs(b));
return 0;
}
else { return 1; }
}
int compare_point(fields &f1, fields &f2, const vec &p) {
monitor_point m1, m_test;
f1.get_point(&m_test, p);
f2.get_point(&m1, p);
for (int i = 0; i < 10; i++) {
component c = (component)i;
if (f1.gv.has_field(c)) {
complex<double> v1 = m_test.get_component(c), v2 = m1.get_component(c);
if (abs(v1 - v2) > tol * abs(v2) && abs(v2) > thresh) {
master_printf("%s differs: %g %g out of %g %g\n", component_name(c), real(v2 - v1),
imag(v2 - v1), real(v2), imag(v2));
master_printf("This comes out to a fractional error of %g\n", abs(v1 - v2) / abs(v2));
master_printf("Right now I'm looking at %g %g, time %g\n", p.x(), p.y(), f1.time());
return 0;
}
}
}
return 1;
}
int test_metal(double eps(const vec &), int splitting) {
double a = 10.0;
double ttot = 17.0;
grid_volume gv = voltwo(3.0, 2.0, a);
structure s1(gv, eps);
structure s(gv, eps, no_pml(), identity(), splitting);
s.add_susceptibility(one, E_stuff, lorentzian_susceptibility(0.3, 0.1));
s1.add_susceptibility(one, E_stuff, lorentzian_susceptibility(0.3, 0.1));
master_printf("Metal+dispersion test using %d chunks...\n", splitting);
fields f(&s);
f.add_point_source(Hz, 0.7, 2.5, 0.0, 4.0, vec(0.3, 0.5), 1.0);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299, 0.401), 1.0);
fields f1(&s1);
f1.add_point_source(Hz, 0.7, 2.5, 0.0, 4.0, vec(0.3, 0.5), 1.0);
f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299, 0.401), 1.0);
double field_energy_check_time = 8.0;
while (f.time() < ttot) {
f.step();
f1.step();
if (!compare_point(f, f1, vec(0.5, 0.01))) return 0;
if (!compare_point(f, f1, vec(0.46, 0.33))) return 0;
if (!compare_point(f, f1, vec(1.0, 1.0))) return 0;
if (f.time() >= field_energy_check_time) {
if (!compare(f.field_energy(), f1.field_energy(), " total energy")) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f1.electric_energy_in_box(gv.surroundings()), "electric energy"))
return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f1.magnetic_energy_in_box(gv.surroundings()), "magnetic energy"))
return 0;
field_energy_check_time += 5.0;
}
}
return 1;
}
int test_periodic(double eps(const vec &), int splitting) {
double a = 10.0;
double ttot = 17.0;
grid_volume gv = voltwo(3.0, 2.0, a);
structure s1(gv, eps);
structure s(gv, eps, no_pml(), identity(), splitting);
master_printf("Periodic test using %d chunks...\n", splitting);
fields f(&s);
f.use_bloch(vec(0.1, 0.7));
f.add_point_source(Hz, 0.7, 2.5, 0.0, 4.0, vec(0.3, 0.5), 1.0);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299, 0.401), 1.0);
fields f1(&s1);
f1.use_bloch(vec(0.1, 0.7));
f1.add_point_source(Hz, 0.7, 2.5, 0.0, 4.0, vec(0.3, 0.5), 1.0);
f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299, 0.401), 1.0);
double field_energy_check_time = 8.0;
while (f.time() < ttot) {
f.step();
f1.step();
if (!compare_point(f, f1, vec(0.5, 0.01))) return 0;
if (!compare_point(f, f1, vec(0.46, 0.33))) return 0;
if (!compare_point(f, f1, vec(1.0, 1.0))) return 0;
if (f.time() >= field_energy_check_time) {
if (!compare(f.field_energy(), f1.field_energy(), " total energy")) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f1.electric_energy_in_box(gv.surroundings()), "electric energy"))
return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f1.magnetic_energy_in_box(gv.surroundings()), "magnetic energy"))
return 0;
field_energy_check_time += 5.0;
}
}
return 1;
}
int test_periodic_tm(double eps(const vec &), int splitting) {
double a = 10.0;
double ttot = 17.0;
grid_volume gv = voltwo(3.0, 2.0, a);
structure s1(gv, eps);
structure s(gv, eps, no_pml(), identity(), splitting);
master_printf("Periodic 2D TM test using %d chunks...\n", splitting);
fields f(&s);
f.use_bloch(vec(0.1, 0.7));
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299, 0.401), 1.0);
fields f1(&s1);
f1.use_bloch(vec(0.1, 0.7));
f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299, 0.401), 1.0);
double field_energy_check_time = 8.0;
while (f.time() < ttot) {
f.step();
f1.step();
if (!compare_point(f, f1, vec(0.5, 0.01))) return 0;
if (!compare_point(f, f1, vec(0.46, 0.33))) return 0;
if (!compare_point(f, f1, vec(1.0, 1.0))) return 0;
if (f.time() >= field_energy_check_time) {
if (!compare(f.field_energy(), f1.field_energy(), " total energy")) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f1.electric_energy_in_box(gv.surroundings()), "electric energy"))
return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f1.magnetic_energy_in_box(gv.surroundings()), "magnetic energy"))
return 0;
field_energy_check_time += 5.0;
}
}
return 1;
}
int test_pml(double eps(const vec &), int splitting) {
double a = 10.0;
grid_volume gv = voltwo(3.0, 2.0, a);
structure s1(gv, eps, pml(1.0, X) + pml(1.0, Y, High));
structure s(gv, eps, pml(1.0, X) + pml(1.0, Y, High), identity(), splitting);
master_printf("Testing pml while splitting into %d chunks...\n", splitting);
fields f(&s);
f.add_point_source(Hz, 0.7, 1.5, 0.0, 4.0, vec(1.5, 0.5), 1.0);
f.add_point_source(Ez, 0.8, 1.6, 0.0, 4.0, vec(1.299, 0.401), 1.0);
fields f1(&s1);
f1.add_point_source(Hz, 0.7, 1.5, 0.0, 4.0, vec(1.5, 0.5), 1.0);
f1.add_point_source(Ez, 0.8, 1.6, 0.0, 4.0, vec(1.299, 0.401), 1.0);
const double deltaT = 100.0;
const double ttot = 3.1 * deltaT;
double field_energy_check_time = deltaT;
while (f.time() < f.last_source_time())
f.step();
while (f1.time() < f1.last_source_time())
f1.step();
double last_energy = f.field_energy();
while (f.time() < ttot) {
f.step();
f1.step();
if (f.time() >= field_energy_check_time) {
if (!compare_point(f, f1, vec(0.5, 0.01))) return 0;
if (!compare_point(f, f1, vec(0.46, 0.33))) return 0;
if (!compare_point(f, f1, vec(1.0, 1.0))) return 0;
const double new_energy = f.field_energy();
if (!compare(new_energy, f1.field_energy(), " total energy")) return 0;
if (new_energy > last_energy * 1e-6) {
master_printf("Energy decaying too slowly: from %g to %g (%g)\n", last_energy, new_energy,
new_energy / last_energy);
return 0;
}
else { master_printf("Got newE/oldE of %g\n", new_energy / last_energy); }
field_energy_check_time += deltaT;
}
}
return 1;
}
int test_pml_tm(double eps(const vec &), int splitting) {
double a = 10.0;
grid_volume gv = voltwo(3.0, 3.0, a);
structure s1(gv, eps, pml(1.0));
structure s(gv, eps, pml(1.0), identity(), splitting);
master_printf("Testing TM pml while splitting into %d chunks...\n", splitting);
fields f(&s);
f.add_point_source(Ez, 0.8, 1.6, 0.0, 4.0, vec(1.299, 1.401), 1.0);
fields f1(&s1);
f1.add_point_source(Ez, 0.8, 1.6, 0.0, 4.0, vec(1.299, 1.401), 1.0);
const double deltaT = 100.0;
const double ttot = 3.1 * deltaT;
double field_energy_check_time = deltaT;
while (f.time() < f.last_source_time())
f.step();
while (f1.time() < f1.last_source_time())
f1.step();
double last_energy = f.field_energy();
while (f.time() < ttot) {
f.step();
f1.step();
if (f.time() >= field_energy_check_time) {
if (!compare_point(f, f1, vec(0.5, 0.01))) return 0;
if (!compare_point(f, f1, vec(0.46, 0.33))) return 0;
if (!compare_point(f, f1, vec(1.0, 1.0))) return 0;
const double new_energy = f.field_energy();
if (!compare(new_energy, f1.field_energy(), " total energy")) return 0;
if (new_energy > last_energy * 4e-6) {
master_printf("Energy decaying too slowly: from %g to %g (%g)\n", last_energy, new_energy,
new_energy / last_energy);
return 0;
}
else { master_printf("Got newE/oldE of %g\n", new_energy / last_energy); }
field_energy_check_time += deltaT;
}
}
return 1;
}
int test_pml_te(double eps(const vec &), int splitting) {
double a = 10.0;
grid_volume gv = voltwo(3.0, 3.0, a);
structure s1(gv, eps, pml(1.0));
structure s(gv, eps, pml(1.0), identity(), splitting);
master_printf("Testing TE pml while splitting into %d chunks...\n", splitting);
fields f(&s);
f.add_point_source(Hz, 0.7, 1.5, 0.0, 4.0, vec(1.5, 1.5), 1.0);
f.add_point_source(Hz, 0.7, 1.5, 0.0, 4.0, vec(1.37, 1.27), 1.0);
fields f1(&s1);
f1.add_point_source(Hz, 0.7, 1.5, 0.0, 4.0, vec(1.5, 1.5), 1.0);
f1.add_point_source(Hz, 0.7, 1.5, 0.0, 4.0, vec(1.37, 1.27), 1.0);
const double deltaT = 100.0;
const double ttot = 3.1 * deltaT;
double field_energy_check_time = deltaT;
while (f.time() < f.last_source_time())
f.step();
while (f1.time() < f1.last_source_time())
f1.step();
double last_energy = f.field_energy();
while (f.time() < ttot) {
f.step();
f1.step();
if (f.time() >= field_energy_check_time) {
if (!compare_point(f, f1, vec(0.5, 0.01))) return 0;
if (!compare_point(f, f1, vec(0.46, 0.33))) return 0;
if (!compare_point(f, f1, vec(1.0, 1.0))) return 0;
const double new_energy = f.field_energy();
if (!compare(new_energy, f1.field_energy(), " total energy")) return 0;
if (new_energy > last_energy * 1.1e-6) {
master_printf("Energy decaying too slowly: from %g to %g (%g)\n", last_energy, new_energy,
new_energy / last_energy);
return 0;
}
else { master_printf("Got newE/oldE of %g\n", new_energy / last_energy); }
field_energy_check_time += deltaT;
}
}
return 1;
}
int main(int argc, char **argv) {
initialize mpi(argc, argv);
verbosity = 0;
master_printf("Testing 2D...\n");
for (int s = 2; s < 4; s++)
if (!test_pml(one, s)) meep::abort("error in test_pml vacuum\n");
for (int s = 2; s < 4; s++)
if (!test_pml_tm(one, s)) meep::abort("error in test_pml_tm vacuum\n");
for (int s = 2; s < 4; s++)
if (!test_pml_te(one, s)) meep::abort("error in test_pml_te vacuum\n");
for (int s = 2; s < 4; s++)
if (!test_metal(one, s)) meep::abort("error in test_metal vacuum\n");
// if (!test_metal(one, 200)) meep::abort("error in test_metal vacuum\n");
for (int s = 2; s < 5; s++)
if (!test_metal(targets, s)) meep::abort("error in test_metal targets\n");
// if (!test_metal(targets, 60)) meep::abort("error in test_metal targets\n");
for (int s = 2; s < 5; s++)
if (!test_periodic(targets, s)) meep::abort("error in test_periodic targets\n");
// if (!test_periodic(one, 200))
// meep::abort("error in test_periodic targets\n");
for (int s = 2; s < 4; s++)
if (!test_periodic_tm(one, s)) meep::abort("error in test_periodic_tm vacuum\n");
return 0;
}