forked from NanoComp/meep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bench.cpp
314 lines (267 loc) · 9.85 KB
/
bench.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/* Copyright (C) 2005-2023 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <meep.hpp>
using namespace meep;
double one(const vec &) { return 1.0; }
static double width = 20.0;
double bump(const vec &pt) { return (fabs(pt.z() - 50.0) > width) ? 1.0 : 12.0; }
struct bench {
double time; // In seconds.
double gridsteps;
};
bench bench_periodic(const double rmax, const double zmax, double eps(const vec &)) {
const double a = 10.0;
const double gridpts = (zmax == 0.0) ? a * rmax : a * a * rmax * zmax;
const double ttot = 5.0 + 1e5 / gridpts;
const int m = 0;
grid_volume gv = volcyl(rmax, zmax, a);
structure s(gv, eps);
fields f(&s, m);
f.use_bloch(0.0);
f.add_point_source(Ep, 0.7, 2.5, 0.0, 4.0, veccyl(0.5, 0.4), 1.0);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, veccyl(0.401, 0.301), 1.0);
double start = wall_time();
while (f.time() < ttot)
f.step();
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
bench bench_flux_1d(const double zmax, double eps(const vec &)) {
const double a = 10.0;
const double gridpts = a * zmax;
const double ttot = 10.0 + 1e5 / zmax;
grid_volume gv = volone(zmax, a);
structure s(gv, eps, pml(zmax / 6));
fields f(&s);
f.use_real_fields();
f.add_point_source(Ex, 0.7, 2.5, 0.0, 3.0, vec(zmax / 2 + 0.3), 1.0);
flux_vol *left = f.add_flux_plane(vec(zmax / 3.0), vec(zmax / 3.0));
flux_vol *right = f.add_flux_plane(vec(zmax * 2.0 / 3.0), vec(zmax * 2.0 / 3.0));
while (f.time() <= f.last_source_time())
f.step();
grid_volume mid = volone(zmax / 3, a);
mid.set_origin(vec(zmax / 3));
double flux_energy = 0.0;
double start = wall_time();
while (f.time() < ttot) {
f.step();
flux_energy += f.dt * (right->flux() - left->flux());
}
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
bench bench_2d(const double xmax, const double ymax, double eps(const vec &)) {
const double a = 10.0;
const double gridpts = a * a * xmax * ymax;
const double ttot = 5.0 + 1e5 / gridpts;
grid_volume gv = voltwo(xmax, ymax, a);
structure s(gv, eps);
fields f(&s);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(0.401, 0.301));
f.add_point_source(Hz, 0.8, 0.7, 0.0, 4.0, vec(0.431, 0.2));
while (f.time() < f.last_source_time())
f.step();
const double tend = f.time() + ttot;
double start = wall_time();
while (f.time() < tend)
f.step();
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
const double te_tm_2d_time = 2e5;
bench bench_2d_tm_nonlinear(const double xmax, const double ymax, double eps(const vec &)) {
const double a = 10.0;
const double gridpts = a * a * xmax * ymax;
const double ttot = 5.0 + te_tm_2d_time / gridpts;
grid_volume gv = voltwo(xmax, ymax, a);
structure s(gv, eps);
s.set_chi3(eps);
fields f(&s);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(0.401, 0.301));
while (f.time() < f.last_source_time())
f.step();
const double tend = f.time() + ttot;
double start = wall_time();
while (f.time() < tend)
f.step();
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
bench bench_2d_tm(const double xmax, const double ymax, double eps(const vec &)) {
const double a = 10.0;
const double gridpts = a * a * xmax * ymax;
const double ttot = 5.0 + te_tm_2d_time / gridpts;
grid_volume gv = voltwo(xmax, ymax, a);
structure s(gv, eps);
fields f(&s);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(0.401, 0.301));
while (f.time() < f.last_source_time())
f.step();
const double tend = f.time() + ttot;
double start = wall_time();
while (f.time() < tend)
f.step();
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
bench bench_2d_te(const double xmax, const double ymax, double eps(const vec &)) {
const double a = 10.0;
const double gridpts = a * a * xmax * ymax;
const double ttot = 5.0 + te_tm_2d_time / gridpts;
grid_volume gv = voltwo(xmax, ymax, a);
structure s(gv, eps);
fields f(&s);
f.add_point_source(Ex, 0.8, 0.6, 0.0, 4.0, vec(0.401, 0.301));
f.add_point_source(Hz, 0.6, 0.6, 0.0, 4.0, vec(0.7, 0.5));
while (f.time() < f.last_source_time())
f.step();
const double tend = f.time() + ttot;
double start = wall_time();
while (f.time() < tend)
f.step();
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
bench bench_2d_te_nonlinear(const double xmax, const double ymax, double eps(const vec &)) {
const double a = 10.0;
const double gridpts = a * a * xmax * ymax;
const double ttot = 5.0 + te_tm_2d_time / gridpts;
grid_volume gv = voltwo(xmax, ymax, a);
structure s(gv, eps);
s.set_chi3(eps);
fields f(&s);
f.add_point_source(Ex, 0.8, 0.6, 0.0, 4.0, vec(0.401, 0.301));
f.add_point_source(Hz, 0.6, 0.6, 0.0, 4.0, vec(0.7, 0.5));
while (f.time() < f.last_source_time())
f.step();
const double tend = f.time() + ttot;
double start = wall_time();
while (f.time() < tend)
f.step();
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
#define showbench(name, bb) \
{ \
bench b = bb; \
master_printf("bench:, %s, %g, %g\n", name, b.time, b.time * 1e6 / b.gridsteps); \
}
// 3D benchmarks:
inline double max(double a, double b) { return (a > b) ? a : b; }
bench bench_3d_periodic(const double xmax, const double ymax, const double zmax,
double eps(const vec &)) {
const double a = 10.0;
const double gridpts = a * a * a * max(xmax, 1 / a) * max(ymax, 1 / a) * max(zmax, 1 / a);
const double ttot = 5.0 + 1e5 / gridpts;
grid_volume gv = vol3d(xmax, ymax, zmax, a);
structure s(gv, eps);
fields f(&s);
if (xmax == 0) f.use_bloch(X, 0.0);
if (ymax == 0) f.use_bloch(Y, 0.0);
if (ymax == 0) f.use_bloch(Z, 0.0);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(xmax * .5, ymax * .5, zmax * .5));
while (f.time() < f.last_source_time())
f.step();
const double tend = f.time() + ttot;
double start = wall_time();
while (f.time() < tend)
f.step();
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
bench bench_3d(const double xmax, const double ymax, const double zmax, double eps(const vec &)) {
const double a = 10.0;
const double gridpts = a * a * a * xmax * ymax * zmax;
const double ttot = 5.0 + 1e5 / gridpts;
grid_volume gv = vol3d(xmax, ymax, zmax, a);
structure s(gv, eps);
fields f(&s);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(xmax * .5, ymax * .5, zmax * .5));
while (f.time() < f.last_source_time())
f.step();
const double tend = f.time() + ttot;
double start = wall_time();
while (f.time() < tend)
f.step();
bench b;
b.time = (wall_time() - start);
b.gridsteps = ttot * a * 2 * gridpts;
// f.print_times();
return b;
}
int main(int argc, char **argv) {
initialize mpi(argc, argv);
verbosity = 0;
master_printf("Benchmarking with %d processor%s...\n", count_processors(),
count_processors() > 1 ? "s" : "");
master_printf("bench:, test, total time (s), normalized time (s/Mgs)\n");
showbench("Periodic 6x4 ", bench_periodic(6.0, 4.0, one));
showbench("Periodic 12x1", bench_periodic(12.0, 1.0, one));
showbench("Periodic 1x12", bench_periodic(1.0, 12.0, one));
showbench("Periodic 12x0", bench_periodic(12.0, 0.0, one));
showbench("Periodic 12x12", bench_periodic(12.0, 12.0, one));
width = 20.0;
showbench("Flux 1D 100", bench_flux_1d(100.0, bump));
width = 10.0;
showbench("Flux 1D 100", bench_flux_1d(100.0, bump));
width = 300.0;
showbench("Flux 1D 100", bench_flux_1d(100.0, bump));
showbench("3D 1x1x10", bench_3d(1.0, 1.0, 10.0, one));
showbench("3D 10x1x1", bench_3d(10.0, 1.0, 1.0, one));
showbench("3D 1x1x1 ", bench_3d(1.0, 1.0, 1.0, one));
showbench("3D 3x3x3 ", bench_3d(3.0, 3.0, 3.0, one));
showbench("3D 10x3x0", bench_3d_periodic(10.0, 3.0, 0.0, one));
showbench("3D 0x3x10", bench_3d_periodic(0.0, 3.0, 10.0, one));
showbench("2D 6x4 ", bench_2d(6.0, 4.0, one));
showbench("2D 12x12 ", bench_2d(12.0, 12.0, one));
showbench("2D 12x12 ", bench_2d(12.0, 12.0, one));
showbench("2D TM 6x4 nonlinear ", bench_2d_tm_nonlinear(6.0, 4.0, one));
showbench("2D TM 6x4 ", bench_2d_tm(6.0, 4.0, one));
showbench("2D TM 12x12 ", bench_2d_tm(12.0, 12.0, one));
showbench("2D TE 2x2 nonlinear ", bench_2d_te_nonlinear(2.0, 2.0, one));
showbench("2D TE 2x2 ", bench_2d_te(2.0, 2.0, one));
showbench("2D TE 10x11 nonlinear ", bench_2d_te_nonlinear(10.0, 11.0, one));
showbench("2D TE 10x11 ", bench_2d_te(10.0, 11.0, one));
master_printf("\nnote: 1 Mgs = 1 million grid point time steps\n");
return 0;
}