forked from NanoComp/meep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aniso_disp.cpp
148 lines (137 loc) · 4.96 KB
/
aniso_disp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/* Copyright (C) 2005-2023 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Anisotropic dispersion test program */
/* For comparison, we solve for the dispersion relation
analytically in Matlab using the fsolve command to solve
the nonlinear eigenproblem. The Matlab code is as follows.
function result = detMwk(f,k)
sigE = [ 2.92724 0.45948 0.70117;
0.45948 2.89689 0.45083;
0.70117 0.45083 2.17378; ];
epsinf = [ 2.41104 0.48709 0.41226;
0.48709 2.43172 1.62060;
0.41226 1.62060 3.61498; ];
sigH = 0;
muinf = [ 1 0 0; 0 1 0; 0 0 1; ];
f0 = 1.1; g0 = 1e-5;
epsinv = inv(epsinf + ((f0^2)/(f0^2 - f^2 -i*f*g0))*sigE);
muinv = inv(muinf + ((f0^2)/(f0^2 - f^2 -i*f*g0))*sigH);
E = [ 0 0; 1 0; 0 1; ];
kx = k * [ 0 0 0; 0 0 -1; 0 1 0; ];
result = det(E' * (f.^2*eye(3) + kx * muinv * kx * epsinv) * E);
endfunction
k = 0.813;
w1 = fsolve(@(w)detMwk(w,k),0.9);
w2 = fsolve(@(w)detMwk(w,k),w1-0.1);
*/
#include <vector>
#include <meep.hpp>
using namespace meep;
using std::complex;
class anisodisp_material : public material_function {
public:
virtual void eff_chi1inv_row(component c, double chi1inv_row[3], const volume &v,
double tol = DEFAULT_SUBPIXEL_TOL,
int maxeval = DEFAULT_SUBPIXEL_MAXEVAL) {
(void)v;
(void)tol;
(void)maxeval; // unused
if (component_direction(c) == X) {
chi1inv_row[0] = 0.432818;
chi1inv_row[1] = -0.076724;
chi1inv_row[2] = -0.014964;
}
else if (component_direction(c) == Y) {
chi1inv_row[0] = -0.076724;
chi1inv_row[1] = 0.600041;
chi1inv_row[2] = -0.260249;
}
else {
chi1inv_row[0] = -0.014964;
chi1inv_row[1] = -0.260249;
chi1inv_row[2] = 0.395003;
}
}
virtual void sigma_row(component c, double sigrow[3], const vec &r) {
(void)r; // unused
if (component_direction(c) == X) {
sigrow[0] = 2.92724;
sigrow[1] = 0.45948;
sigrow[2] = 0.70117;
}
else if (component_direction(c) == Y) {
sigrow[0] = 0.45948;
sigrow[1] = 2.89689;
sigrow[2] = 0.45083;
}
else {
sigrow[0] = 0.70117;
sigrow[1] = 0.45083;
sigrow[2] = 2.17378;
}
}
};
int main(int argc, char **argv) {
initialize mpi(argc, argv);
bool ok = true;
// we can only use one process for this 1-pixel simulation
if (0 == divide_parallel_processes(count_processors())) {
verbosity = 0;
const double res = 200;
grid_volume gv = vol3d(0, 0, 0, res);
gv.center_origin();
anisodisp_material anisodispmat;
structure *s = new structure(gv, anisodispmat);
s->add_susceptibility(anisodispmat, E_stuff, lorentzian_susceptibility(1.1, 1e-5));
fields f(s);
delete s; // should be safe since structure_chunk in f is refcounted
f.use_bloch(vec(0.813, 0, 0));
f.add_point_source(Ez, 0.5, 1.0, 0.0, 4.0, vec(0, 0, 0));
double T = f.last_source_time();
int iT = T / f.dt;
while (f.t < iT) {
if (f.t % (iT / 10) == 0) master_printf("%g%% done with source\n", f.time() / T * 100);
f.step();
}
double T2 = 200;
int iT2 = T2 / f.dt;
std::vector<complex<double> > vals(iT2);
while (f.t - iT < iT2) {
if ((f.t - iT) % (iT2 / 10) == 0)
master_printf("%g%% done with harminv\n", (f.t - iT) * 100.0 / iT2);
vals[f.t - iT] = f.get_field(Ez, vec(0., 0., 0.));
f.step();
}
complex<double> amps[8];
double freqs_re[8], freqs_im[8];
master_printf("done with timestepping, running harminv...\n");
int num = do_harminv(vals.data(), iT2, f.dt, 0.0, 1.0, 8, amps, freqs_re, freqs_im);
// compute the error compared to analytical solution
int i0 = 0;
for (int i = 0; i < num; i++) {
master_printf("freq %d is %0.6g, %0.6g\n", i, freqs_re[i], freqs_im[i]);
if (fabs(freqs_re[i] - 0.41562) < fabs(freqs_re[i0] - 0.41562)) i0 = i;
}
master_printf("err. real: %g\n", fabs(freqs_re[i0] - 0.41562) / 0.41562);
master_printf("err. imag: %g\n", fabs(freqs_im[i0] + 4.8297e-07) / 4.8297e-7);
double tol = sizeof(realnum) == sizeof(float) ? 0.27 : 0.20;
ok = fabs(freqs_re[i0] - 0.41562) / 0.41562 < 1e-4 &&
fabs(freqs_im[i0] + 4.8297e-07) / 4.8297e-7 < tol;
}
end_divide_parallel();
return !and_to_all(ok);
}