forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_model.py
238 lines (189 loc) · 6.38 KB
/
predict_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
A script to predict nodules using conv net model and for analysis of results
"""
import tflearn
from cnn_model import CNNModel
import tensorflow as tf
import pickle
import pandas as pd
import numpy as np
import h5py
from sklearn.metrics import roc_curve, auc, confusion_matrix
import itertools
import matplotlib.pyplot as plt
hdfs_file = '../data/test.h5'
def create_mosaic(image, nrows, ncols):
"""
Tiles all the layers in nrows x ncols
Args:
------
image = 3d numpy array of M * N * number of filters dimensions
nrows = integer representing number of images in a row
ncol = integer representing number of images in a column
returns formatted image
"""
M = image.shape[1]
N = image.shape[2]
npad = ((0,0), (1,1), (1,1))
image = np.pad(image, pad_width = npad, mode = 'constant',\
constant_values = 0)
M += 2
N += 2
image = image.reshape(nrows, ncols, M, N)
image = np.transpose(image, (0,2,1,3))
image = image.reshape(M*nrows, N*ncols)
return image
def format_image(image, num_images):
"""
Formats images
"""
idxs = np.random.choice(image.shape[0], num_images)
M = image.shape[1]
N = image.shape[2]
imagex = np.squeeze(image[idxs, :, :, :])
print imagex.shape
return imagex
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Purples):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
#plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
#plt.grid('off')
plt.ylabel('True label')
plt.xlabel('Predicted label')
def load_images(filename):
"""
Loads images contained in hdfs file
"""
h5f2 = h5py.File(filename, 'r')
X_test_images = h5f2['X']
Y_test_labels = h5f2['Y']
return X_test_images, Y_test_labels
def plot_predictions(images, filename):
"""
Plots the predictions mosaic
"""
imagex = format_image(images, 4)
mosaic = create_mosaic(imagex, 2, 2)
plt.figure(figsize = (12, 12))
plt.imshow(mosaic, cmap = 'gray')
plt.axis('off')
plt.savefig(filename + '.png', bbox_inches='tight')
def get_predictions(X_test_images, Y_test_labels):
"""
Args:
------
Given hdfs file of X_test_images and Y_test_labels
returns:
--------
predictions: probability values for each class
label_predictions: returns predicted classes
"""
## Model definition
convnet = CNNModel()
network = convnet.define_network(X_test_images)
model = tflearn.DNN(network, tensorboard_verbose=0,\
checkpoint_path='nodule3-classifier.tfl.ckpt')
model.load("nodule3-classifier.tfl")
predictions = np.vstack(model.predict(X_test_images[:,:,:,:]))
#label_predictions = np.vstack(model.predict_label(X_test_images[:,:,:,:]))
score = model.evaluate(X_test_images, Y_test_labels)
label_predictions = np.zeros_like(predictions)
label_predictions[np.arange(len(predictions)), predictions.argmax(1)] = 1
return predictions, label_predictions
def get_roc_curve(Y_test_labels, predictions):
"""
Args:
-------
hdfs datasets: Y_test_labels and predictions
Returns:
--------
fpr: false positive Rate
tpr: true posiive Rate
roc_auc: area under the curve value
"""
fpr, tpr, thresholds = roc_curve(Y_test_labels[:,1], predictions[:,1], pos_label=1)
roc_auc = auc(fpr, tpr)
return fpr, tpr, roc_auc
def get_metrics(Y_test_labels, label_predictions):
"""
Args:
-----
Y_test_labels, label_predictions
Returns:
--------
precision, recall and specificity values and cm
"""
cm = confusion_matrix(Y_test_labels[:,1], label_predictions[:,1])
TN = cm[0][0]
FP = cm[0][1]
FN = cm[1][0]
TP = cm[1][1]
precision = TP*1.0/(TP+FP)
recall = TP*1.0/(TP+FN)
specificity = TN*1.0/(TN+FP)
return precision, recall, specificity, cm
def plot_roc_curve(fpr, tpr, roc_auc):
"""
Plots ROC curve
Args:
-----
FPR, TPR and AUC
"""
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',
lw=lw, label='(AUC = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.axis('equal')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="lower right")
plt.savefig('roc1.png', bbox_inches='tight')
def main():
X_test_images, Y_test_labels = load_images(hdfs_file)
predictions, label_predictions = \
get_predictions(X_test_images, Y_test_labels)
fpr, tpr, roc_auc = get_roc_curve(Y_test_labels, predictions)
plot_roc_curve(fpr, tpr, roc_auc)
precision, recall, specificity, cm =\
get_metrics(Y_test_labels, label_predictions)
print precision, recall, specificity
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cm, classes=['no-nodule', 'nodule'], \
title='Confusion matrix')
plt.savefig('confusion_matrix.png', bbox_inches='tight')
# Plot all inputs representing True Positives, FP, FN, TN
TP_images = X_test_images[(Y_test_labels[:,1] == 1) & (label_predictions[:,1] == 1), :,:,:]
FP_images = X_test_images[(Y_test_labels[:,1] == 0) & (label_predictions[:,1] == 1), :,:,:]
TN_images = X_test_images[(Y_test_labels[:,1] == 0) & (label_predictions[:,1] == 0), :,:,:]
FN_images = X_test_images[(Y_test_labels[:,1] == 1) & (label_predictions[:,1] == 0), :,:,:]
## Choose 16 images randomly
plot_predictions(TP_images, 'preds_tps')
plot_predictions(TN_images, 'preds_tns')
plot_predictions(FN_images, 'preds_fns')
plot_predictions(FP_images, 'preds_fps')
if __name__ == "__main__":
main()