forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalibarate.py
73 lines (54 loc) · 1.65 KB
/
Calibarate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import io,sys
import matplotlib.image as img
import matplotlib.pyplot as plt
import math
from mpl_toolkits.mplot3d.axes3d import Axes3D
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import PolyCollection
from matplotlib import colors as mcolors
# ------ INSER HERE THE FILE NAMES ----------------
calibFile = "cfl.png"
saveFilename = "cfl_plot.png"
# ----------- END ---------------------------------
# ----------- Function ----------------------------
def getSpectrumPNG(filename):
'''From a PNG file taken with spectralworkbench
extracts a spectrum. Each channel's spectrum
is calculated as column mean for the whole picture'''
image = img.imread(filename)
imageR = []
imageG = []
imageB = []
imgWidth = len(image[0])
imgHeight = len(image)
# Preparing arrays
for i in range(imgWidth):
imageR.append(image[0][i][0])
imageG.append(image[0][i][1])
imageB.append(image[0][i][2])
# Columns summatory
for i in range(imgHeight):
for j in range(imgWidth):
imageR[j]=imageR[j]+image[i][j][0]
imageG[j]=imageG[j]+image[i][j][1]
imageB[j]=imageB[j]+image[i][j][2]
# Calculating the mean for every column
for i in range(imgWidth):
imageR[i]=imageR[i]/640
imageG[i]=imageG[i]/640
imageB[i]=imageB[i]/640
# Merging the RGB channels by addition
spectrum = []
for i in range(imgWidth):
spectrum.append((imageR[i]+imageG[i]+imageB[i])/3)
return spectrum
# -------------- Execution ----------------------
# Initialize and load spectra
spectrum = getSpectrumPNG(calibFile)
plt.plot(spectrum)
#plt.ylim(0,1)
plt.xlabel('Pixel ID')
plt.ylabel('Light intensity')
plt.savefig(saveFilename)
plt.show()