forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaskDetect.py
51 lines (39 loc) · 1.68 KB
/
MaskDetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import tensorflow as tf
import numpy as np
# Load a pre-trained MobileNetV2 mask detection model (change to your model path or URL if available)
model = tf.keras.models.load_model('mask_detector_mobilenetv2.h5') # Make sure the model is in the same folder or provide path
# Function to preprocess the image for MobileNetV2
def preprocess_image(face):
face_resized = cv2.resize(face, (224, 224)) # Resize to MobileNetV2 input size
face_normalized = face_resized / 255.0 # Normalize pixel values
face_expanded = np.expand_dims(face_normalized, axis=0) # Add batch dimension
return face_expanded
# Function to perform mask detection
def detect_mask(frame):
# Convert the frame to a tensor and preprocess it
face_preprocessed = preprocess_image(frame)
prediction = model.predict(face_preprocessed)
# MobileNetV2 model output for binary classification (Mask / No Mask)
mask_probability = prediction[0][0] # Get the single output probability for "with_mask"
# Set the threshold for mask detection
threshold = 0.5
label = "Mask" if mask_probability > threshold else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
return label, color
# Initialize video capture
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
# Pre-process each frame for mask detection
label, color = detect_mask(frame)
# Draw label on the frame
cv2.putText(frame, f'{label}', (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
cv2.imshow("Mask Detection", frame)
# Exit on 'q' key press
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()