-
Notifications
You must be signed in to change notification settings - Fork 1
/
28_MinInsertion_toMakeString_palindrome.cpp
49 lines (41 loc) · 1.46 KB
/
28_MinInsertion_toMakeString_palindrome.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// min deletion to make string palindrome = min insertion to make string palindrome
// Same as question 24
// Question Link :- https://www.geeksforgeeks.org/problems/minimum-number-of-deletions4610/1
// Minimum number of deletions to make string Palindrome
// Question Link :- https://leetcode.com/problems/minimum-insertion-steps-to-make-a-string-palindrome/
// Minimum Insertion Steps to Make a String Palindrome
// Brute Force
// T.C = O(2^n)
// S.C = O(n)
// Better Solution (Tabulation)
// T.C = O(n^2)
// S.C = O(n^2)
class Solution {
public:
int LCS(string X, string Y, int n, int m) {
int dp[n + 1][m + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
dp[i][j] = 0;
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (X[i - 1] == Y[j - 1]) { // when last character is same
dp[i][j] = 1 + dp[i - 1][j - 1];
} else { // when last character is not same -> pick max
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return dp[n][m];
}
int minInsertions(string s) {
int n = s.length();
string rev_s = s;
reverse(rev_s.begin(), rev_s.end());
return n - LCS(s, rev_s, n, n);
}
};