diff --git a/models/Dementia Prediction Model/model.py b/models/Dementia Prediction Model/model.py
new file mode 100644
index 00000000..d18b6a0b
--- /dev/null
+++ b/models/Dementia Prediction Model/model.py
@@ -0,0 +1,31 @@
+import pandas as pd
+from sklearn.model_selection import train_test_split
+from sklearn.linear_model import LinearRegression
+import joblib
+
+class CarPriceModel:
+ def __init__(self):
+ self.model = LinearRegression()
+
+ def load_data(self, filepath):
+ data = pd.read_csv(filepath)
+ return data
+
+ def preprocess_data(self, data):
+ # Assuming 'price' is the target column and the rest are features
+ X = data.drop('price', axis=1) # Replace 'price' with the actual target column name
+ y = data['price'] # Replace 'price' with the actual target column name
+ return train_test_split(X, y, test_size=0.2, random_state=42)
+
+ def train(self, X_train, y_train):
+ self.model.fit(X_train, y_train)
+
+ def save_model(self, model_path):
+ joblib.dump(self.model, model_path)
+
+if __name__ == "__main__":
+ car_model = CarPriceModel()
+ data = car_model.load_data('data/cleaned_car_data.csv') # Adjust the path to your dataset
+ X_train, X_test, y_train, y_test = car_model.preprocess_data(data)
+ car_model.train(X_train, y_train)
+ car_model.save_model('saved_models/car_price_model.pkl')
\ No newline at end of file
diff --git a/models/Dementia Prediction Model/modelevalution.py b/models/Dementia Prediction Model/modelevalution.py
new file mode 100644
index 00000000..08e0b032
--- /dev/null
+++ b/models/Dementia Prediction Model/modelevalution.py
@@ -0,0 +1,21 @@
+import joblib
+import pandas as pd
+from sklearn.metrics import mean_squared_error, r2_score
+
+class ModelEvaluator:
+ def __init__(self, model_path):
+ self.model = joblib.load(model_path)
+
+ def evaluate(self, X_test, y_test):
+ predictions = self.model.predict(X_test)
+ mse = mean_squared_error(y_test, predictions)
+ r2 = r2_score(y_test, predictions)
+ print("Mean Squared Error:", mse)
+ print("R^2 Score:", r2)
+
+if __name__ == "__main__":
+ data = pd.read_csv('data/cleaned_car_data.csv') # Load your test data
+ X_test = data.drop('price', axis=1) # Replace 'price' with the actual target column name
+ y_test = data['price'] # Replace 'price' with the actual target column name
+ evaluator = ModelEvaluator('saved_models/car_price_model.pkl')
+ evaluator.evaluate(X_test, y_test)
\ No newline at end of file
diff --git a/models/Dementia Prediction Model/notebook/dementia-prediction-using-different-ml-model.ipynb b/models/Dementia Prediction Model/notebook/dementia-prediction-using-different-ml-model.ipynb
new file mode 100644
index 00000000..990a4df2
--- /dev/null
+++ b/models/Dementia Prediction Model/notebook/dementia-prediction-using-different-ml-model.ipynb
@@ -0,0 +1,3276 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.045864,
+ "end_time": "2021-02-21T05:24:40.532878",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:40.487014",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Importing Libs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
+ "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:40.625317Z",
+ "iopub.status.busy": "2021-02-21T05:24:40.624657Z",
+ "iopub.status.idle": "2021-02-21T05:24:41.846215Z",
+ "shell.execute_reply": "2021-02-21T05:24:41.846810Z"
+ },
+ "papermill": {
+ "duration": 1.269347,
+ "end_time": "2021-02-21T05:24:41.847025",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:40.577678",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd # used to load, manipulate the data and for one-hot encoding\n",
+ "import numpy as np # data manipulation\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib.colors as colors\n",
+ "from sklearn.utils import resample # for downsample the dataset\n",
+ "from sklearn.model_selection import train_test_split # for splitting the dataset into train and test split\n",
+ "from sklearn.preprocessing import scale # scale and center the data\n",
+ "from sklearn.svm import SVC # will make a SVM for classification\n",
+ "from sklearn.model_selection import GridSearchCV # will do the cross validation\n",
+ "from sklearn.metrics import plot_confusion_matrix # will draw the confusion matrix\n",
+ "from sklearn.decomposition import PCA # to perform PCA to plot the data\n",
+ "from sklearn.impute import SimpleImputer\n",
+ "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n",
+ "from sklearn.model_selection import cross_val_score\n",
+ "from sklearn.metrics import confusion_matrix, precision_score, accuracy_score, recall_score, roc_curve, auc\n",
+ "import seaborn as sns"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.044613,
+ "end_time": "2021-02-21T05:24:41.936713",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:41.892100",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Load the data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0",
+ "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a",
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:42.029211Z",
+ "iopub.status.busy": "2021-02-21T05:24:42.028542Z",
+ "iopub.status.idle": "2021-02-21T05:24:42.058687Z",
+ "shell.execute_reply": "2021-02-21T05:24:42.059215Z"
+ },
+ "papermill": {
+ "duration": 0.077355,
+ "end_time": "2021-02-21T05:24:42.059378",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:41.982023",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "data = pd.read_csv(\"../input/mri-and-alzheimers/oasis_longitudinal.csv\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.04491,
+ "end_time": "2021-02-21T05:24:42.149525",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.104615",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Explore the data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:42.244342Z",
+ "iopub.status.busy": "2021-02-21T05:24:42.243655Z",
+ "iopub.status.idle": "2021-02-21T05:24:42.249012Z",
+ "shell.execute_reply": "2021-02-21T05:24:42.248425Z"
+ },
+ "papermill": {
+ "duration": 0.053142,
+ "end_time": "2021-02-21T05:24:42.249140",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.195998",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "pd.set_option('display.max_columns', None) # will show the all columns with pandas dataframe\n",
+ "pd.set_option('display.max_rows', None) # will show the all rows with pandas dataframe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:42.359739Z",
+ "iopub.status.busy": "2021-02-21T05:24:42.359068Z",
+ "iopub.status.idle": "2021-02-21T05:24:42.371999Z",
+ "shell.execute_reply": "2021-02-21T05:24:42.372499Z"
+ },
+ "papermill": {
+ "duration": 0.078228,
+ "end_time": "2021-02-21T05:24:42.372636",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.294408",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Subject ID | \n",
+ " MRI ID | \n",
+ " Group | \n",
+ " Visit | \n",
+ " MR Delay | \n",
+ " M/F | \n",
+ " Hand | \n",
+ " Age | \n",
+ " EDUC | \n",
+ " SES | \n",
+ " MMSE | \n",
+ " CDR | \n",
+ " eTIV | \n",
+ " nWBV | \n",
+ " ASF | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " OAS2_0001 | \n",
+ " OAS2_0001_MR1 | \n",
+ " Nondemented | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " M | \n",
+ " R | \n",
+ " 87 | \n",
+ " 14 | \n",
+ " 2.0 | \n",
+ " 27.0 | \n",
+ " 0.0 | \n",
+ " 1987 | \n",
+ " 0.696 | \n",
+ " 0.883 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " OAS2_0001 | \n",
+ " OAS2_0001_MR2 | \n",
+ " Nondemented | \n",
+ " 2 | \n",
+ " 457 | \n",
+ " M | \n",
+ " R | \n",
+ " 88 | \n",
+ " 14 | \n",
+ " 2.0 | \n",
+ " 30.0 | \n",
+ " 0.0 | \n",
+ " 2004 | \n",
+ " 0.681 | \n",
+ " 0.876 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " OAS2_0002 | \n",
+ " OAS2_0002_MR1 | \n",
+ " Demented | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " M | \n",
+ " R | \n",
+ " 75 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " 23.0 | \n",
+ " 0.5 | \n",
+ " 1678 | \n",
+ " 0.736 | \n",
+ " 1.046 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " OAS2_0002 | \n",
+ " OAS2_0002_MR2 | \n",
+ " Demented | \n",
+ " 2 | \n",
+ " 560 | \n",
+ " M | \n",
+ " R | \n",
+ " 76 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " 28.0 | \n",
+ " 0.5 | \n",
+ " 1738 | \n",
+ " 0.713 | \n",
+ " 1.010 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " OAS2_0002 | \n",
+ " OAS2_0002_MR3 | \n",
+ " Demented | \n",
+ " 3 | \n",
+ " 1895 | \n",
+ " M | \n",
+ " R | \n",
+ " 80 | \n",
+ " 12 | \n",
+ " NaN | \n",
+ " 22.0 | \n",
+ " 0.5 | \n",
+ " 1698 | \n",
+ " 0.701 | \n",
+ " 1.034 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Subject ID MRI ID Group Visit MR Delay M/F Hand Age EDUC \\\n",
+ "0 OAS2_0001 OAS2_0001_MR1 Nondemented 1 0 M R 87 14 \n",
+ "1 OAS2_0001 OAS2_0001_MR2 Nondemented 2 457 M R 88 14 \n",
+ "2 OAS2_0002 OAS2_0002_MR1 Demented 1 0 M R 75 12 \n",
+ "3 OAS2_0002 OAS2_0002_MR2 Demented 2 560 M R 76 12 \n",
+ "4 OAS2_0002 OAS2_0002_MR3 Demented 3 1895 M R 80 12 \n",
+ "\n",
+ " SES MMSE CDR eTIV nWBV ASF \n",
+ "0 2.0 27.0 0.0 1987 0.696 0.883 \n",
+ "1 2.0 30.0 0.0 2004 0.681 0.876 \n",
+ "2 NaN 23.0 0.5 1678 0.736 1.046 \n",
+ "3 NaN 28.0 0.5 1738 0.713 1.010 \n",
+ "4 NaN 22.0 0.5 1698 0.701 1.034 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()\n",
+ "# data.tail()\n",
+ "# data.size"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:42.468495Z",
+ "iopub.status.busy": "2021-02-21T05:24:42.467769Z",
+ "iopub.status.idle": "2021-02-21T05:24:42.473077Z",
+ "shell.execute_reply": "2021-02-21T05:24:42.472435Z"
+ },
+ "papermill": {
+ "duration": 0.054333,
+ "end_time": "2021-02-21T05:24:42.473216",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.418883",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(373, 15)"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:42.571285Z",
+ "iopub.status.busy": "2021-02-21T05:24:42.570528Z",
+ "iopub.status.idle": "2021-02-21T05:24:42.586722Z",
+ "shell.execute_reply": "2021-02-21T05:24:42.585742Z"
+ },
+ "papermill": {
+ "duration": 0.067194,
+ "end_time": "2021-02-21T05:24:42.586897",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.519703",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 373 entries, 0 to 372\n",
+ "Data columns (total 15 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 Subject ID 373 non-null object \n",
+ " 1 MRI ID 373 non-null object \n",
+ " 2 Group 373 non-null object \n",
+ " 3 Visit 373 non-null int64 \n",
+ " 4 MR Delay 373 non-null int64 \n",
+ " 5 M/F 373 non-null object \n",
+ " 6 Hand 373 non-null object \n",
+ " 7 Age 373 non-null int64 \n",
+ " 8 EDUC 373 non-null int64 \n",
+ " 9 SES 354 non-null float64\n",
+ " 10 MMSE 371 non-null float64\n",
+ " 11 CDR 373 non-null float64\n",
+ " 12 eTIV 373 non-null int64 \n",
+ " 13 nWBV 373 non-null float64\n",
+ " 14 ASF 373 non-null float64\n",
+ "dtypes: float64(5), int64(5), object(5)\n",
+ "memory usage: 43.8+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "data.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.046597,
+ "end_time": "2021-02-21T05:24:42.681879",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.635282",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Converting Categorical Data to Numerical Data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.046699,
+ "end_time": "2021-02-21T05:24:42.776013",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.729314",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "When **inplace = True** , the data is modified in place, which means it will return nothing and the dataframe is now updated. \n",
+ "When **inplace = False** , which is the *default*, then the operation is performed and it returns a copy of the object. You then need to save it to something."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.046777,
+ "end_time": "2021-02-21T05:24:42.872082",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.825305",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "set axis=0 for rows or, just put axis='rows' to access the rows\n",
+ "\n",
+ "set axis=1 for columns or, just put axis='columns' to access the columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:42.982688Z",
+ "iopub.status.busy": "2021-02-21T05:24:42.981824Z",
+ "iopub.status.idle": "2021-02-21T05:24:42.985482Z",
+ "shell.execute_reply": "2021-02-21T05:24:42.986097Z"
+ },
+ "papermill": {
+ "duration": 0.067422,
+ "end_time": "2021-02-21T05:24:42.986242",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:42.918820",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 373 entries, 0 to 372\n",
+ "Data columns (total 15 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 Subject ID 373 non-null object \n",
+ " 1 MRI ID 373 non-null object \n",
+ " 2 Group 373 non-null int64 \n",
+ " 3 Visit 373 non-null int64 \n",
+ " 4 MR Delay 373 non-null int64 \n",
+ " 5 M/F 373 non-null int64 \n",
+ " 6 Hand 373 non-null object \n",
+ " 7 Age 373 non-null int64 \n",
+ " 8 EDUC 373 non-null int64 \n",
+ " 9 SES 354 non-null float64\n",
+ " 10 MMSE 371 non-null float64\n",
+ " 11 CDR 373 non-null float64\n",
+ " 12 eTIV 373 non-null int64 \n",
+ " 13 nWBV 373 non-null float64\n",
+ " 14 ASF 373 non-null float64\n",
+ "dtypes: float64(5), int64(7), object(3)\n",
+ "memory usage: 43.8+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "data['M/F'] = [1 if each == \"M\" else 0 for each in data['M/F']]\n",
+ "data['Group'] = [1 if each == \"Demented\" or each == \"Converted\" else 0 for each in data['Group']]\n",
+ "# data['Group'] = data['Group'].replace(['Converted'], ['Demented']) # Target variable\n",
+ "# data['Group'] = data['Group'].replace(['Demented', 'Nondemented'], [1,0]) # Target variable\n",
+ "data.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.046981,
+ "end_time": "2021-02-21T05:24:43.080526",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:43.033545",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "Note: Based on the given data **CDR** is used to tell what the condition of the patient meaning, does the patient has any dementia or, not.\n",
+ "\n",
+ "CDR Value Meaning:\n",
+ "\n",
+ "* 0 ---> Normal\n",
+ "* 0.5 ---> Very Mild Dementia\n",
+ "* 1 ---> Mild Dementia\n",
+ "* 2 ---> Moderate Dementia\n",
+ "* 3 ---> Severe Dementia"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.047171,
+ "end_time": "2021-02-21T05:24:43.175738",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:43.128567",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Correlation Between Attributes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:43.274629Z",
+ "iopub.status.busy": "2021-02-21T05:24:43.273593Z",
+ "iopub.status.idle": "2021-02-21T05:24:43.287746Z",
+ "shell.execute_reply": "2021-02-21T05:24:43.287173Z"
+ },
+ "papermill": {
+ "duration": 0.064432,
+ "end_time": "2021-02-21T05:24:43.287873",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:43.223441",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Group 1.000000\n",
+ "CDR 0.778049\n",
+ "M/F 0.222146\n",
+ "SES 0.062463\n",
+ "ASF 0.032495\n",
+ "Age -0.005941\n",
+ "eTIV -0.042700\n",
+ "Visit -0.095507\n",
+ "MR Delay -0.120638\n",
+ "EDUC -0.193060\n",
+ "nWBV -0.311346\n",
+ "MMSE -0.524775\n",
+ "Name: Group, dtype: float64"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "correlation_matrix = data.corr()\n",
+ "data_corr = correlation_matrix['Group'].sort_values(ascending=False)\n",
+ "data_corr"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:43.387454Z",
+ "iopub.status.busy": "2021-02-21T05:24:43.386736Z",
+ "iopub.status.idle": "2021-02-21T05:24:45.327091Z",
+ "shell.execute_reply": "2021-02-21T05:24:45.326421Z"
+ },
+ "papermill": {
+ "duration": 1.99135,
+ "end_time": "2021-02-21T05:24:45.327222",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:43.335872",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ]],\n",
+ " dtype=object)"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAKLCAYAAABCNuEJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeZgkd33n+fc3jjyrsu6uvrvU6tZ9gFRCCJCRQazBGq/B4PEBjz0ebLHjWQ7jsUe2sQ1eDxaWbQa0NjNaezz2wNjjedbYQI/N0giBAAmpJaEDtdTdavV91F1ZeWdG/PaPympVV5/VXZeyP6/nqaci4hcZ8c2sX0blJ3+RkeacQ0RERERERFqTt9wFiIiIiIiIyOJR6BMREREREWlhCn0iIiIiIiItTKFPRERERESkhSn0iYiIiIiItDCFPhERERERkRYWLOXOzGwt8BXgGqDNOdeY0/Z5IAX8jnNu+9m21dvb6wYGBhaxWpELs2/fPtQ3ZaVS/5SVSn1TVjL1T1mpnnjiiRHnXN+51lvS0AeMAW8FvniatnuAjwHPMB0Mzxr6BgYG2LFjx4IXKHKxBgcHT/TNH77v6+wfrXD92jb+8UNvXubKTjVwz7YT0/vuvWsZKzm9mfpuWpvh7z/0w8tczavLeKHG/9hxgPZUyE/fsh7f94FX+ufWe7ZRb677R4PwnvesvL+/tK7THXtmHztn2ntS8MTHV1bf3LdvH3f8px8A8HO3rOX33v3aZa7oZJ/60jN87rsHAfiP772cd15/1TJXdLL33P8QOw4XgZX5f+exl0f4y+/s55o17XzwrVecWD67f851dLLMaKHGxp4M+0eKvDRcZG1HikojplCp05VNcP36TtqSZ37ZfTxf4ZsvDtGIHW+9up/+XAqA4akqx/MVOtMhzx/Ns3ekQHsi4LkjE+wfLZFNBnQ3t7+hM82O/WOMFWvUI8dooc4169r5qcGNrO/OnNjXs4cm2P7CcbIJn/ZUSG82ya2be/jiU4fYeSRPpR5RrDbA4LbLe9myqp2pSp3DEyWq9ZhNPRnK9Yjv7hnl0FiZatTg2HiZhjNu3dxJVzrJzmN5+tuTTFYi6g3HT71uPaV6zHOHJijVG4Tmsb4zzeMHxsmXa6zKpcgkQ/rbktx+RR+Xr2qjETvy5Tqh77HreJ79Y0VSvk+5HjFZbhB4Rr5a59q1OTZ0ZXj20CQvHM+TLzW4eVMXP/HadXx37xiNOCYVeEQOXrO+k+/tG2NkqsobNvfQ1ZZgXVeG7myC3cen+MGRPFevaSdfaXBkosytl3WzuiM9rz5Ua8TsGSpQqNaZKNYYLta4YX0HV6/OsWe4gG+G5xmVekR7KiBfbrC+K01nJjGv/cwws/3ns96Shj7nXAWomNnpmm8APuycc2Y2ZWbtzrmppaxPZCGNjY3x8mgFgKePFJa5mlPNftG1El02q74nj5SWsZJXpy8/c5hnD+cB2NST4U1bT34TsD5r+t/tgPe8ZwmLk0vauY49V89qbx5CV5Q7m4EP4K8fP7LiQt9M4AP4yBde4p33rqzQNxP4ADbfs429Kyz4ffbrL3Fssszu41O85ap+rl3Xcdb1a42Y54/kcQ5GC1WePDBBtR7xnT3D9LalGJqqMNCTJfQ9Bge6T7uNKHY88tIo39w1QugbDnjvrZtwzvHc4clm+wgvDRc5OFpkolxnaKpCsRrhYmhPB+w6XqQ/l+TwRJmxYo1itYED9o0WaU+F3P1DlwNQqUd88anD7DyaJ19p0NeW4KrVOV48NsVj+8fYdWyKWiOiXIvJJH12DRV429WrOTRe4ni+Sugbj+/zKVQavDxSoFiLqEXuxH158IURUqFHI4KdR6eIgWTg8Zmv72Zd13QoLtYaZBIBtSimUo+oR46XR0qEgUdfW5Ij+Qp3Xt1POvQ5MF6i0Yh56uAE+XKdQqVBjKMeOYrVBpmEz7MHJ7lxQyeP7RtjrFAjih2jhQpDhRrlWsTwVAUzo689yVMHxjk2WaUWxbw8UuRt1/QzXqpz86YuvvHiEPlyg73DBapRTOh5FCoN3vv6TfPqQ/tHixyeKPHUwQkOjZbAg8lSnShyjBRqFKoNqvWIrmyCwxNlNnRlmCzXeeOW3nntZ75W0mf6fOfcTK+ZBLrmrmBmd5vZDjPbMTw8vLTVicxTd/fpD+5yftbmVtLh6dWnr336XWLPoK89uczViJy/K9emlruEs1rVvtQnSV24lX4UXdV22kGAZdWTDQFIBB49beE51w88IxFMP9LtqZBs0sfzIJcOSYUe6dAnGXhkEmfuN55Beyog4Ruh79GVnh7xMTNS4fRZGl3ZBOnQJwy96XWD6f0kAiMMPLJJn55sgtD3SDR/fM9IJTy6M6/cD98zOtIhvueRSfikEz6h77GhO0XS9wh9I/R9gsAIPKMt9EknpveZCjwSgUdb0qcjHRAENj1qNeu++J6R9D08D0K/2W4eXZkEqdAj9Kd/As/IJAMCMzyDoHnfQ9+jIx2cqCsZ+HRmQ5Lh9L4zSZ904BH4Rir0CHyPdMJv1jd9G88zwsBY15HC9yCd8E/8XXrakiRCwww60iGJ5mMX+h7Z5khsRzog23zcO7PzH31LJ3wMIx34tKUCQm+6xpmRvERgZBIBxnQ/mbnNYrNXctbSMbOHgDvnfKbvIefcHc3pLwHvc87lz7SNwcFBp9M7ZSWafQrItu8f4HMP7eXX3nEVb75y9TJXdqqZd9w/0AG/8Rsr691WgDd+8p84lo95aYW9E/xq8eyhCdpTAQO9bSeWne4UupV4ipW0tpm+99tb4f3vP/X0ztvv/V8cnHD848+s58Ybb1y2Os/k7X/0IEcLZZ5eYaeezrjmt7aRCOD7n1iZ9W25ZxtrOnwe/o23L3cpp6jX62x79hjXre9gy6rcieVnO72z2ogoVBp0ZRKUag2OTVZYlUtSqkXEsSPwPfrak5zhTDdgesTw8HiJWiNma38bnjcdpepRTL5cJ5cKGCnUGC/VaEsGHJ0oc3SyTDbpk00mWNuZJpsMOD5ZplirY85jqFhhU3eGq1bnCINXQkWhUmfX0BTtyQDf90j5Pmu70uwdLnBsskTsjHq9TqHueM2GDkLfJ4odhWqDWiOmty1JFDv2Duc5XqjhxY6XR4vky3Xefv0aUkHAs4cnGOhOM1WLGCvW+N9vXM9oqcrB0QIODzA2dKf4/v5xStUGXe1JOlIhoe+zpb+dtmRAI46JIkfkHLVGzJGJMrl0QKnaoNpwJEOP4XyFK1bn8D2PfLnG/rESpVqdrf1tXNnfyf7RIjhHIvCoNGI29WTZP1piqlzj8v524tjRkQ4JfI9yrcGRiQprO1NUGzGjhRoDvVl8b/5vTkyUagCUaxFTlQZrO1O0pUImy3U8mw7H1XpMNhkwVanTmUlc0H4AzOwJ59zgOddbQaHvs8DfMP2Zvm0zAfBMFPpkpTrbPwaR5ab+KSuV+qasZOqfslKdb+hb6qt3hsA/ATcCXzWz32R6RO+DwB8Cfw2kgd+d77Yv9vNJeqdbRERERERa0VJfyKUO3Dln8feabYeAtyxlPSIiIiIiIq1upX/GV0RERERERC6CQp+IiIiIiEgLe/Vcd1hkEV3MZ0L1eVARERERWck00iciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLUyhT0REREREpIUp9ImIiIiIiLQwhT4REREREZEWptAnIiIiIiLSwhT6REREREREWtiihj4z+7SZPWxmn5mz/D+a2UPNn/Hmsn9lZi82l/3hYtYlIiIiIiJyqQgWa8NmdhOQdc7dbmafM7NbnHOPAzjnPtJc57XAr8662X3OuT9frJpEREREREQuNYs50ncbsL05vR14/WnWeRfw97PmP2Jm3zKzt55ug2Z2t5ntMLMdw8PDC1utiIiIiIhIC1rM0NcJ5JvTk0DXadZ5O/DPzel/AG4A3g38kZn5c1d2zj3gnBt0zg329fUtQskiIiIiIiKtZTFD3wSQa07nmvMnmNlW4LBzrgTgnJtwzsXOuWFgF9C/iLWJiIiIiIhcEhYz9D0CzJymeSfw6Jz2dwFfnJkxs1zzdxrYCuj8TRERERERkYu0aKHPOfckUDGzh4HYOfeYmd0/a5V/AXx51vyvmNkjwEPAvc65+mLVJiIiIiIicqlYtKt3AjjnPjxn/oOzpn9oTtsngE8sZj0iIiIiIiKXGn05u4iIiIiISAtT6BMREREREWlhCn0iIiIiIiItTKFPRERERESkhSn0iYiIiIiItDCFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi0sOJ+VzCwF/DLwJsAB3wY+55yrLGJtIiIiIiIicpHOK/QBfw1MAfc3538G+G/ATy5GUSIiIiIiIrIwzjf0Xemcu3HW/DfM7OnFKEhEREREREQWzvl+pu8pM3v9zIyZ3Qp8Z3FKEhERERERkYVyviN9twI/Z2YHmvMbgZ1m9izgnHM3LEp1IiIiIiIiclHON/S9fVGrEBERERERkUVxvqHPnXahcwdOt1xERERERERWhvMNfduYDn4GpIDLgBeBaxepLhEREREREVkA5xX6nHPXz543s5uADyxKRSIiIiIiIrJgzvfqnSdxzj0J3HIhtzWzT5vZw2b2mTnLP25mT5vZQ2b20QvZtoiIiIiIiJzsvEb65oQwD7gJGJ7vzpojhFnn3O1m9jkzu8U59/isVX7VObd9vtsVERERERGR0zvfkb72WT9Jpj/j9+MXsL/bgJlQtx14/Zz2T5nZdjN7zQVsW0REREREROY438/0fQLAzNqnZ13hAvfXCbzUnJ7k5AvBfNY593Ez2wr8F+D2uTc2s7uBuwE2btx4gSWIiIiIiIhcOs5rpM/MrjOzp4DngB+Y2RNmdt0F7G8CyDWnc815AJxzY83fu890Y+fcA865QefcYF9f3wXsXkRERERE5NJyvqd3PgB81Dm3yTm3CfjV5rL5egR4a3P6TuDRmQYzyzV/93L+XyUhIiIiIiIiZ3G+oS/rnPvGzIxz7iEgO9+dNa/6WTGzh4HYOfeYmd3fbL7PzL4DfBm4Z77bFhERERERkVOd74jaXjP7beC/NeffB7x8ITt0zn14zvwHm7/1vX8iIiIiIiIL7HxH+v410Af8ffOnF/iFxSpKREREREREFsY5R/rMzAf+p3PuziWoR0RERERERBbQOUf6nHMRUDKzjiWoR0RERERERBbQ+X6mrwI8a2ZfA4ozC51zH1qUqkRERERERGRBnG/o29b8AXDN37bw5YiIiIiIiMhCOmvoM7MfB9Y75/60Of8Y0xd0ccC/X/zyRERERERE5GKc6zN9vw58adZ8ArgZuAP4PxapJhEREREREVkg5zq9M+GcOzhr/tvOuTFgzMzm/eXsIiIiIiIisrTONdLXNXvGOfd/zprtW/hyREREREREZCGdK/R9z8x+ae5CM/sA8NjilCQiIiIiIiIL5Vynd/4K8A9m9rPAk81lNwNJ4J2LWZiIiIiIiIhcvLOGPufcEPAGM3sLcG1z8Tbn3IOLXpmIiIiIiIhctPP6nr5myFPQExEREREReZU512f6RERERERE5FVMoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYYsa+szs02b2sJl9Zs7y3zWzR5o/b20u+1dm9qKZPWRmf7iYdYmIiIiIiFwqFi30mdlNQNY5dzuQMLNbZjX/tXPuNuAdwO/OWn6fc+4O59yvL1ZdIiIiIiIil5LFHOm7DdjenN4OvH6mwTn3cnOyCrhZt/mImX1rZvRvLjO728x2mNmO4eHhxahZRERERESkpSxm6OsE8s3pSaDrNOt8HPjPzel/AG4A3g38kZn5c1d2zj3gnBt0zg329fUtfMUiIiIiIiItZjFD3wSQa07nmvMnmNm7gB7n3H8HcM5NOOdi59wwsAvoX8TaRERERERELgmLGfoeAWZO07wTeHSmwcxuAP5t82dmWa75Ow1sBXT+poiIiIiIyEVatNDnnHsSqJjZw0DsnHvMzO5vNt/H9EjeV83sH5vLfsXMHgEeAu51ztUXqzYREREREZFLRbCYG3fOfXjO/Aebv3/kNOt+AvjEYtYjIiIiIiJyqdGXs4uIiIiIiLQwhT4REREREZEWptAnIiIiIiLSwhT6REREREREWphCn4iIiIiISAtT6BMREREREWlhCn0iIiIiIiItTKFPRERERESkhSn0iYiIiIiItDCFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFrYkoc+M/u0mT1sZp+Zs3ytmT1oZt81szuXui4REREREZFWFCzlzszsJiDrnLvdzD5nZrc45x5vNt8DfAx4BvgKsH0paxNZDAP3bDsxve/eu5axktP75otDHJoo86YtvWzqyS53ObKEZvfNGzz40idXXv+U1nWuY+NMe1sAz/3+yuqb937lq/ynbzeA6RdRe1bYsf0Df/Edvrp7AoCfvL6P+977umWu6GTv+OMH2TlcBuDBu69m8+bNy1zRyfaPFvn2nhHWdaa548pVp7SPF2vsHSmQLzfIpUOu6G+jPRUC0IhiXjg2RRQ7rlrTTjLwT7uPHxye5Nt7Rnjh6CQvDRcYzlfp70jyr994OVevbedLTx/F94wtq7JEMcSxY/dQgStXt3PDuhz//IPjHBgt0plJ4lxMPYb+XIKr13QwWarx+Uf3Y2a87apV/OBYntFinS29Wd64tZeB3ixjxRqBZ0xVGuwZLrB3qMBAT4Yt/Tli58gkAo5Olnj85XECD/o7UvRmk1SjmMdeHuU7u0cp1hqsagvZ3Jdj/3gRD6OnLUEy8GlP+lSjmLFCjXToEwHDU1VW51Jcv76DK/rbuaw3y85jU2zozFBpRIxMVRgp1pgs15ko1th5bIpV7Qk297Wzf2SKA2Nl0mHAqs4UI1NVPKBab4B5XLm6jUK1QbUes6kny49et4abBrrxPePh3cPsPJpnfVeajd1Z9o8WKVQbFKsNruhv581XruKpA2PsPFrg2rU5tva38eKxKVKhzxWr2nhppMiBsRLJwGNDV4bRQo2XRwts6WtjU0+Gr78wRKUeszqXoNqAK/rb2NrfftLfu1KPeOHYFIFnXL0mx8sjRSbLdbb0tdGRCU/bRyZLdfYMT9GRTrBlVRsAUezYeTRPI3ZctbqdVHj6/nUmSxr6gNt4JcxtB14PzIS+G4APO+ecmU2ZWbtzbmqJ6xNZMHfOelGzEo0UKjy+bxyAh3cNs+k2hb5L1TPxclcgl5KBcxwbr/vYK+2FxmJXM38zgQ9gBZZ3IvAB/M9nh7lvGWs5nZnAB/AjD+xk970rK/Q9vGuYY/kqRycqXLcuR29b6qT23UMFjk6U2T1U4Jo1OQLPuHFDJwDHp6ocm6wAkE0GJ16sz5av1Hli/ziP7h3lxWN5Rgo1GrFjotLgy08f5unDWY5NVhkrVtk/WqQznWD/aJF06DNWrLF3uMAzhyY5lq8Qx4506OOA7myCUjXi4T3DHBwr04gdw/kqMVCo1BnOV3DA8XyVnmyCF45NkQo9vvHiELWGawaRCIejty3JN14cYqrSYLRYZXNPlsD38Ay+89II+UoEwIGJGsPFMepRjGdwcLxELpUgdo4odjRiB0xPO2BoqsJ4uUa17nh8/zi92SQvHM2TDgPGS1V2HS/ge8ZLwwUMODhW5sBYhaF8mSh2xA72j5VoxPGJed83Dk+USfhGI4aRQo1cOqS/M00i8Hhi3zh7R4ocGiux+3iR2DmePzpJVzrBZLnBZb1ZHnt5nKlKg0K1Tj2KmSjVAQg948BoiR8cmaQtGXB4vEylHjFSqFFtxLw0UmTfSInD4yXaUyG5dIhnsCqXoiP9Spg7NF5iZKoKQDL02D9SAmAPBW7e1HXafrhneIrxYp3xYp01HSmyyYChqcqJ/nUw4Z8SLs9lqU/v7ATyzelJYPY99Z1z7gxtAJjZ3Wa2w8x2DA8PL26lIhdp+wp793euXCpBR3r6fZ/VHalzrC0isjDevPXsx5u7rjl1dEUuTHK5CziHmzbmlruEU6zpTAPQngrIpRKntHdmQhKhR1syIPCNzlkjNe2pAM8DM0560T9bKvDpyoZ0pAKyyYBE4OEDCd9jTWearava8Gw6NK7pSNGeCqb/R5vRkQ7YuqqN9lRAOvTpyoS0pQLSCY/2VEBXNsFAT5bAjND32NCdIh16JIPp9u62BP25FGbGqlyStmRIb1uS0De6swk6swG5VEguHbC2I0XoGx2pkPZ0QE82QVc2QWcz2AAEBtmET+AZoeeRDn2SgZFNBGQSPmHgkQp90uH0OqnAoyOVIJP0uLx5dlF/LkV72qc9FdKVCckm/BP7SCc8ujIBmWRI4HuEgUc26ZMIPFKBRyLwCD2PjlRIJhGSDD0yCZ++9iS5VDD9N0wHJAOP7rYkazqTJAOP3rYkydCnIx3Q05Y88TfsziZYlZt+1gS+0duebO4zIJMI6M8l6WjW1pYMuKwni+dBJhmwKpckFXpkktP3d7ZcOsQMfM/ozSZOjNCdqY9Mt033vVTokwym41pbMsD37Kz962zslZy1+Mzs3wLDzrm/M7OfANY75z7bbHvIOXdHc/pLwPucc/kzbWtwcNDt2LHjxPy53jk8l5V46p0snYvpP3P7zuDgIDN9c2a7W1iZIbBSazBZadCfU+i7VJyuf+r4J0vt5//i63xzd+Wkvje7b/77//4433hpiMd+e2X2zZt+cxtj8cp97vzIH3+NdODzDx9+y3KXclrv+OMHuXF9B/f+1M3LXcppHc9X6EgFpBKvnBA3u38Wqg18g9hNh7PZqo0I5zjrqXf1KGaiWKNcbzBVbjA0VaG3LcHl/TkyiYBDEyWyQUAQGFHsSAU+w4UKPW1JUoHPaLFKpRqRSQVUGxGeGaFvJMOAVODxg8OTJHxjQ8/0qZyVekR7OqQzFZIMfUr1iHTgUW7ExFHMRLlOeyogFQaAI3LTpwIezVfIJn2cmw4ctdhRrjZ44VieockS16ztoC2ZYLhYIWrAuu4UpVpEWyqkFsUUy3XSyQDDNe9jis5sgoTvk0uFjBSqdKZDGrGjVI8IDfLVBqnA46WhKVZ3pUh4AfUo5shEmZ72EN98SrWIhOdRrNcAY11nhslyHQPSSZ/ettSJx79ca5CvNEiHPtmEz1S1ge8ZpVp04m9cj2LGizW6swkC36NUaxB406GyHsXUGhEOIxP61KKYci0ik/RJBj7jpSq+eXieTY+8JnxC/9QxtXItwvMgGfg0ophKI6YtefYTLgvNxyKYtb1qIyKOIZ14pX+Z2RPOucGzboylD303AR9wzn3AzP4M+K/OuceabZ8F/obpz/RtmwmAZ6LQJwtpsUKfyEqj/ikrlfqmrGTqn7JSrdTQdyvwRSALvOyce42Z3e+c+6CZ3Qx8DQiB33fOfeps2+rt7XUDAwOLXrPIuUSxw5851wHYt28f6puyUs3unzOHf7Mzry+yWBwwu+vNPXY65zB1TlkhVuL/9rnPoVezVrovS+2JJ55wzrlzfmRvqS/ksh/Y7JyrmNkXzOx659wHm20/D/wLXrl651lD38DAgN5xkWV3/9d388KxKa5d184v37EV0LuBsrLN9M8Xjub5p+eOkgx93vu6jXRkTv3sishiiGLH4/vGKFQaXLm6nQ3dGeCVvlmpNfjC9w4wXqpzx5V9DA50L3PFry6T5TpPHhjHgJs3dZ24sqRcnJX0vz2KHTv2jTFVmb4C5caezJLuv1KPeHzf9AVcrl/XSV/7hX96tNaIeXzfGJV6xLVrO3SNgQtgZk+ez3pLeiEX59wx51ylOdsAolnNNwCPOOcKwJSZnXJJGl3IRVaa3UPTF5h98VhhmSsRmZ89QwWiGErViMMT5XPfQGSBlGoNCpXp614OTVVOaR8u1hhvXj1v95COrfM1WqgSRY5G5Bgv1pe7HFkE5XrE1FmeQ4stX65TrcfE8fRXMVyMqUqdcm36c5AXuy05uyX/cnYAM7sB6HXOPT9r8Tmv3umce8A5N+icG+zr61uKUkXO6oeu6COXCrjjCvVHeXW5eVMXXZmQdV1pNvfq6zpk6bQlA9Z0psgk/NN+P+i6jhRbVrXRkQ645QyXM5czW9ORJpcO6cyEJ65EKK0lm/DP+hxabN3ZBN1tCbLJgA3d6YvaVlcmQV97kkzSv+htydkt9emdmFk38H8D/3JO0+xRvxwwgcgK956bN/Cemzcsdxki87amM837b19Z348llwYz49q1HWds9zyPd7523RJW1FrSCZ/XXaZTYlvZuZ5Diy3wPW7auDBvyHizvudQFteShj4zC4DPA7/mnDs2p/kZM7uN6c/05c72dQ0irya6sqyIiIiILKelPr3zJ4FbgE+Z2UNmdpuZ3d9s+0PgPwDbgU8ucV0iIiIiIiItaUlH+pxzf8P0d/HN9kiz7RCwMr9FVERERERE5FVqWS7kIiIiIiIiIktDoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLUyhT0REREREpIUp9ImIiIiIiLQwhT4REREREZEWptAnIiIiIiLSwhT6REREREREWphCn4iIiIiISAtT6BMREREREWlhCn0iIiIiIiItTKFPRERERESkhSn0iYiIiIiItDCFPhERERERkRa2pKHPzNaa2ZNmVjGzYE7bx83saTN7yMw+upR1iYiIiIiItKrg3KssqDHgrcAXz9D+q8657UtYj/n5Y0cAACAASURBVIiIiIiISEtb0pE+51zFOTd+llU+ZWbbzew1S1aUiIiIiIhIC1tJn+n7rHPuZuDfAPefbgUzu9vMdpjZjuHh4aWtTkRERERE5FVoxYQ+59xY8/fus6zzgHNu0Dk32NfXt3TFiYiIiIiIvEqtmNBnZrnm716W/rOGIiIiIiIiLWmpr94Zmtl24Ebgq2Z2q5nNnMp5n5l9B/gycM9S1iUiIiIiItKqlnREzTlXB+6cs/h7zbYPLGUtIiIiIiIil4IVc3qniIiIiIiILDyFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLSxYyI2ZWdY5V1zIbYrIxRm4Z9tF3X7fvXctUCUiIiIishwuaKTPzNaZ2aCZJZrzq8zsk8DuBa1ORERERERELsq8Q5+ZfQT4PnA/8KiZ/TywE0gDNy9seSIiIiIiInIxLuT0zruBK51zY2a2EdgD/JBz7tGFLU1EREREREQu1oWc3llxzo0BOOcOALsU+ERERERERFamCxnpW29mn501v2r2vHPuQxdfloiIiIiIiCyECxnp+zXgiVk/c+fPyMzWmtmTZlYxs+A0bQ+a2XfN7M4LqEtkye3cuZN3/Ml2du7cudyliMzb3zyyh0d3jS53GXIJeu7wEH/w5WfO2D6WL/PtXUNLWNH87Bme5OkDY8tdxhkdGitwaKyw3GWc0Xd3D3NgpLTcZZxRpR4Rx+68149jR6UeLUotzr2y7Th25Mt1otgxXqwyMlWlXG1QqjZw7vzrna3aiIia9zWKHVPlOlOV+nnffqJYY2SyzHihwrHxIo1GTKUWUWhuY3b9UeyoNeKTbl+pR1TrEfUoJood1cYrj2M9iqlHMZV6RCOKqdQbVOrRSfd1KF+h3jj5sa81YhrRyfuZbWa7S2X2Y1xrLO2+Z5v3SJ9z7q8uYn9jwFuBL56m7R7gY8AzwFeA7RexH5El8Y6/2nvi9757r17makTO3xv/YDuHJ6sA/PIPbeTXf/T6Za5ILhXfem6In/v84wD8l0cOsvuTJ38tzJ7hSX7iTx+h2ogZ3NTNF37p9ctR5hn987NH+OjfPU3kHO967Vruffdrlrukk3zxiYPc97VdmMHv3HU1P3Ld2uUu6SR3/9XjPPjiEL7n8bmffS1vuWb1cpd0kr3DBfYOF8kmA153WTe+Z2dd3znHjv3j5Mt1NvVk2NrfvqD1fP/gBKOFGv25JIcnyvzgSJ5KPWLPUIGxYo1N3Rm29rfxhi293Lype17bPjxRZueRPKnQ54b1HXx79zDbdw7RmQl552vXccP6zrPe/nt7R/nP33yJQxMlosiRCn1u2tTFqvYkUQw/cm0/5UbMWKFGT1uCfKVBI4q5bl0H/bkUu45PsfNInqP5Mpt72wDwzLh6bY72VMAT+8Y5MF4iE/pMluuYQS4VckV/Ozdu6OQvv/0yO/aPs7ojyT3vuJrQ9xgtVHn60ASeGYMD3bQlT446k6U6Tx4YB+CmjV10ZMJ5PWbzdWSizPNH8iRDjy2r2th5NI+ZMbipi/bU4u57rgv9yoafb47YFZs/O8zs5851O+dcxTk3fobmG4BHnHMFYMrMTnnWmNndzX3tGB4evpDSRUQEONoMfAD/+PTxZaxELjV/+b09J6brp3nD++EXRqg2RwN2D6280ap/evYYUXOk4Yn9E8tczam+u3cMFzviyPHtPStvJP+Zw5MARHHMV549uszVnGq0WAOgWG2cNOp0JrUoJl+eHtUaKdQWtBbnHGPNeo7nqxwZr+Ac7B0uUqjWqdQjjk5WyFcaDE9V5z3aN1qY/j9QqUccz1c4PlWl2ogp1SL2j557JHbX8TzFWkSxGjFeqlNpxLw0XKBQadCIHQfGSow1H5ODYyXqjRjnYLS5bKRQZapap1CJyJfrJ5aPFqpMFKdHNPOlOmOFGhOlOhPFGlOVOqPF6br3DE8fH45NVpkqT992vFQjjqEROSbLp45YjpdqRLGbHi0tLezf63Rm7lO1HnN4vEwcQ3SG2hbbvEf6muHuI8BHgScBA24C7jMznHN/fYG1+O6V3joJdAFTs1dwzj0APAAwODh4YePYIiLCu16zmv/3+8cA+ON3v3aZq5FLyV++/w0M3LMNgIGu1CntPz24li987wAjxRrvfd2GpS7vnH797Vfz2P4xavWYD73l8uUu5xS/8MZN7D4+hZnx/jdettzlnOL9bxzgsw/uIZ0I+M23X7nc5Zxic2+W3UMFurMJMolzv0xOBj4DvVlGClU292UXtBYzY+uqdo5MltnQnWFVLsmTB8b50d7VPN0cAbxiTRvrOjNcs6YDs7OPSs61qSdLpR6TTfps7s1SqDYYK1bJpUIGN3Wd8/Y/fGU/Lx4vkE34eOZwGG+7pp9E4FOuR7x2YxflZjC9cnU7E6U6lUbExp4MAFtWtdGIHO2pkA1daTzPqDUcm3qypEOfkWKVq9fkCHybPuXWQSr02Lpqelzo7detZvvzx7lydTtd2SQA6zozTJbr+J7HqvbkKTWv6Uwx1gx7azpPPf4stE29Gcr1iExi+jHeeSyPZ0Z/bvH3PZfN910BM3sU+Gnn3L45yweAv3XOnfM8DDN7CLjTOdeYvcw5d0dz+kvA+5xz+TNtY3Bw0O3YsWNetYsshcHBQWb3zZkXNxdq3713nXuls1ju/cvKMrd/iqwU6puykql/ykplZk845wbPtd6FnN6Zmxv4AJrLchewvRnPmNltZpZt7uOMgU9ERERERETOz4WEvvIFtmFmoZltB24Evmpmt5rZ/c3mPwT+A9MXcPnkBdQlIiIiIiIic1zI9/RdbWanu86yAZvPdkPnXB2Y+3UM32u2HQLecgH1iIiIiIiIyBlcSOi7EegHDs5Zvgk4ctEViYiIiIiIyIK5kNM7Pw3knXP7Z/8ApWabiIiIiIiIrBAXEvoGnHOnnN7pnNsBDFx0RSIiIiIiIrJgLiT0ne2LJdIXWoiIiIiIiIgsvAsJfY+b2S/NXWhm7weeuPiSREREREREZKFcyIVcPgJ80czeyyshbxBIAO9aqMJERERERETk4s079DnnjgNvMLMfBq5rLt7mnHtwQSsTERERERGRi3YhI30AOOe+AXxjAWsRERERERGRBXYhn+kTERERERGRVwmFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFrYkoc+M/u0mT1sZp+Zs/zjZva0mT1kZh9d6rpERERERERaUbCUOzOzm4Csc+52M/ucmd3inHt81iq/6pzbPp9tNhox39w9TCNyvPmKXlKJJb1LcokbuGfbiel99961jJWIzM9P/enX+d7BCqC+K0vvXMfOzfdsIwbuvLKHP/+F1y9hZec2OjrKbX/yKFEEv//jV/Izt21Z7pJO8qVHD/Chf3gWgM//0vW86fKNy1zRye75uyf52yePAivz2PP8kUn+9vEDXLW6g5+9df6P3XOHJ9k7XGBtV5pyNaJQa9CVTnDd+g7akqd/jXpovMTLI0UOjBbxPOOtV/WzKpc6aZ1SrcHe4SLJwKMWxXSkQyZLNb65e5gogoHeDJ2pgKcOTjBWrFOuRRRrdd58RR933biOzKzXx88dnuTBF47TmQ54y1WrWd+doR7FfGvXMLVGzPHJMjv2j9OIY27b3MvmvjYKtQZHxspU44jBTd0MdGf4m8cOUGlEZJI+3941isPx9mtX43kej+wdIel7lGoNOtIJ3vv6jcSx8fzRCZ45lKcRxWztb2OsWOe6dTmuXJ3jwReGSAYeP3bjWlZ3pE+6/y8em2L38SnCAPYOlzg6UWFjd4Yfe81akoHHjn3jPHtkgt3Hp4gixxu29PEvB9dxeKJKI4qpNmIOjZe4vC/L/tESxyar3HJZF1evyWFmAOwemmLn0TxX9ecoVOscHq/wus3d9M/5W5xLPYrZM1SgUG1QrNRJBj7Xre+gPRWeWGffSJFSLaI9FTBZrrO+K01nJjGv/czXUiek24CZULcdeD0wO/R9yszGgX/nnPv++Wzw2SOTPHVgAoBU6PHmK1ctYLkiIq1pJvDB9AvwlfjiS1rT7MB3Ou+8/5vEzentL44ufkHz9M4/f4paND392196ccWFvpnAB/C+/+dZ9t27skLfTOADuO53tvHc762sY88D39rLofEyzx+Z4tbLurl8Vdt537ZUa/C1549TrUc8vHuY3rYUQ1MVBnqyhIFx86bu097m+cN5Hts3xvNHJ1nVnsI5OyVwvnBsirFCjb3DBdZ1pak3HM8dmeD5I3kmKw3Wd6bxPDg0Xma8WKNQbRD6Hkcnqwz0tnPLZdP7rtQj/v7JQ+w8msfMCH2fd920nuear6f3jxY4OFZm70iR0DdeODbFnVev5vB4iWP5KqnQY6xQJxkYj+0bZ6JUY7xUo1iZflIcm6yQSviMFeqUag0c0JkOGSnWGBzo5us7j3FwrIxnxvdeHqOnLcELx/Jc1pvlxeMF0qGPmfGLt28+cd9HC1W++9IIh8fL7BmeYrJUZ6RQY33X9H1e353h0ZdG2b7zOJOlOs7BWLFKZyYkmwgYL9V4abhA4Hns2D/OVLlBuR4xVa3T05akP5eiWG3wjReGyZfrvHS8QDWKCTyPqWqdn71107z60L6RIofGS3z/4ATlakRHNsT3PV7X/BuMF2vsGSoQO8fhiTIbujJMluu8cUvvvPYzX0t9emcnkG9OTwJds9o+65y7Gfg3wP2nu7GZ3W1mO8xsx/Dw8PQG0yHedECnK7u4CVlEpBXpyClLac05OtxrN3QuTSEXaEtv9sR0Olx5l0ZI2CvTbSv8yX1Zd/bcKy2xrsz0aEwy9OjIzG9sJPA8sgkfz4P2VEAyMNKhTyLwSIX+GW8TBkY64ZMKfALPI5c6db/p5u0zSR/fM9IJj1wqQRh4JDwjk/DpSof4nhH4HgnfI/CMtpRPe+qVffuekUuH+J5HMvBoS4UEntGRDvE8yCQDUgmfwDMCz8iEPumERzYZkPSNwDcyyYBV7Ul8m95XNgzwPPA8yKamg5bvQcL38D3wfY/etiTJwCMTBoTedG2ZhI9nHpmET29bEt8zQt+jMxOedN9ToU86bN6fREgy8Ah8IxF4dGUS5FLh9GMc+IS+h+8ZqcCjry2B2XQdM6OsnamQdMLDM8gmgxN/l9CfrgMglw5INZ/bHemTazkf6YSPYSQDj1TCJzlr2zDdtzwPDMg1t59OnL5/LKSlHumbAHLN6VxzHgDn3Fjz9+6ZYda5nHMPAA8ADA4OOoDL+tr4mddtpBbFbOpZeQcPEZGVaN+9dzFwzzbSwE6N8skSeuT37jpx+ubn3nxqaPrdd97IwfEyTx4Y58u/eMPSF3gOf/n+2/jgFx5j/0iZL334zctdzil2/cFd3Pr7XyXpe3zrN9623OWcYt+9d3H972xjoDvLlz9yx3KXc4rf+tGreHDXCFesaqO3bX6n9SUCj5+5dSNHJiqs6UhSrEVEUUwY+PS1Jc94m9su7+XK1TlK1Tr1GK7sP3V08arV7fS1J8kmeijWItqSAW/c0svtx7sJfI/OzHSoOjpZZqpcx8wYK1a5YUMXG7szJ7YT+h6/+KbLeOOWHtpTIQM9WQLfY+uqdn5qcAORg2q9wb6RAvlyxOBAF4nQpxHFFCoR1XqDTb1tdGUTXLu2A8xoT/g8dWCcCLh1cw++wTMHJ2lP+5QqDXzf54evWkWxFnHHFX0cGivRcI7NvVkOT5S5vK+dXDrgjitXYWZcuzZ30n3PJgN+7MZ1HMtXaE8GHJ0sU643yCRCrl3bgXOOdZ1pfuyGNewdLuCbsXVNO1tX5Ziq1Ilih2cwUqixpiPNaKHKZKXGxu7siVMuE4HHu29ax6HxMus609SimKF8hctXtc+rDwCs78qQTQTctKmLUq1B6Bl97a/0pUwi4PWbe6jUY9qS06d3di/BwJU55xZ9Jyd2Nv2Zvg845z5gZn8G/Ffn3GPNtpxzLm9mvcCXnXO3nW1bg4ODbseOHUtQtcj8DA4OMrtvnutUpnO52NPulnv/srLM7Z8iK4X6pqxk6p+yUpnZE865wXOtt6TnJTjnngQqZvYwEDvnHjOzmVM57zOz7wBfBu5ZyrpERERERERa1ZJf6tI59+E58x9s/v7AUtciIiIiIiLS6lbeJ5BFRERERERkwSj0iYiIiIiItDCFPhERERERkRa25J/pExGZD119VEREROTiaKRPRERERESkhSn0iYiIiIiItDCFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLUyhT0REREREpIUFS71DM/s0MAg86Zz78Kzla4HPAyngd5xz2893mwP3bANg3713LWyxIuew5/gYf/aNvXzsf9tMd3f3cpcjMi86dspyed8D/x/f3ls/Y9/7tb99lK/9YJTv/18rs2/e+rFtHG+s3OfOj/7J1wD4Xx992zJXcnrv/Mw3uWVTF7/1zhuWu5TTGspXyKUCUonTv0wuVhv4nhE7R2bOOtVGhHOQCv0zbr8RxUyWa5RrEVPVOiNTVTZ2Z+nLpcgkAo5MlEmHPqFvRA6SvsdIoUp3W4JU4DNWqlGpNQj96bEbzzN8z0gGPsnA4/kjkyQDn7UdaY5MlvA9oy0V0pEOSQY+pXpEOvAoN2Jq9QYjU1VW5VKkEgHOOSIHocGxfIV00sc5aE+G1KKYSr3Bs4cmOD5Z5sb1XWSTIePFKvXI0dOeoFyP6GlLUY9ipkp10imfSq1OvtSgtz1NKuHTkQlpT4aMFKokfTier9KIHX1tSaqRw7mYA2MlNvakCTyfRhxzeKxMT3sC3zzKjYik7zFVqVOpx2zqzVCqxZhzpBIBPW1JUqFPFDtGpiqU6xGpwKc7m6DciPENSrWIXCqk4RxJ35go1+nKJAh8j3ItwveMROBRj2JqjQiHkQn95mMQkU74JAOfiVIN3zM8m+4P6dAn8E8dU6vUI8wgGfg0ophqIyabPHsMK1YbJAPvpO2dT/86kyUNfWZ2E5B1zt1uZp8zs1ucc483m+8BPgY8A3wFOK/QN/OiZWZ6pR6ApTXd+elHAPji94/zsvqevIro2CnLZSbwwen73i/9xbf42u6pM7Yvt5X+3Jld35Z7trFnhdb3/aMFnjkyyf/45duXuaKTPfjCEE/uH6cjHfDzb7iMRHDyC/hdx6fYO1xg32iJzb1ZrlqdY2NPBoB8pc4T+8aJnePGDZ30tiVP2X49ivnqD46x/fnjPH9kkqOTFepRTEc65Gdv3ciajjQP7x6hUo/Y2t9G4HmMl2qMFeus70pzw7ocX33+OAfGSphBezIgDDzaEyE3DXTyzMFJvvvSCLGDtR1JRop1qvWYzX1Z3rS1l2vWdBDFjrFSjVojYtszRxkv1tnQleYNW3uJIkdve4IdL4/x0kiRci3ist4s6dDHDL61a5jDExViwDfozoQUqg0MwCCV8EmHAS52lBsxuJhaw9FwjpTvsbojxY0bu9i6qo3hQpUn9o1zdKJCTEw2GdKZDjgwWqLc+P/Zu/M4uc76zvefp07te++tvbVZ3i1Me8UGG0wIMSELk4VM9gQTbsIlkHsTT4YZQ0LuQJIJA55XAg5Jhiww4U4GDBEEMGBjwNiWbcnyJsnal96X6q69zjnP/FHVrVarpZZstbpU+r5fL7lPnfVXp46rzreep87xiIeDrG2PcWS8TLHqApCOBinWPKwPVa8extLRINGQQ823rMrE+PHrVvBj16xgx5FJ/uGxQwzkyqzMRtnckyIVDXJ0okQwECDoGG7sa2f30BTWGvo6E9y0oY3dA3mCjmHrmizPHs2xZ2iaZCRIbzrKRLHKgbECm7qSrG6L88ieEcYKFVZkolgL16zOcOvGztlADjAyXeHZo5MEjGHrmgwvDEzX92tXgo1dyQWPw30jeQ6MFIiFHW5a307QCZCvuDx5YBzfWq5ZnaE7FT2nY/tCt/Tdwokw9xBwMzAT+q4F3mettcaYaWNMylo7PXdhY8w9wD0Aa9euvUAliyzOLncBIiIXiZnAdzrf3jt9xuly9tzlLmARTx+eWu4STnF8oghAruQyVa7SmTz5xHqiUKVS88mXXVzPMlGszoa+6bKL59fPCCaLtQVDX7HqMZ6vkivVyFdcKq6PtZZSzWcwV2Gq5OJbyFdcjk+WaYuHOTZRb/nLlWrsGc4zXXYpVOqvru9ZwqEAWMN4vsqBsTyub3F9y/Fcpb5u12eqVGM8X2VoqkxHIsxQroy1lolCFde3DOfLTBZqWCyhYIBjuTI1zzJZqjFVqlGoejgGJotV/MZz8Szkqx61xnO2FpwAuF49BLq+xfM9PL9+nlS2HvmqR65UY99IgUjQYSxfpex6+Nbi2xoYS6FabxUrVj3GCy6FSg3Pt4394uH6Pl7jOQYMTFdcXN9iLRSrLsPTFcYLVY5PlilUXYo1l4lijYFcmaATYzRfIRsLUy37TJdrDOXqLZ1jhQpDuQoArmcZma5Qdf3ZfT04VaZc8/D9+jYPjBXwfEuh7DJImUwsTLHiUax6ZGInQl+uVMVa8KxlNF9v4a0fI9XTHocz00pVj7Lrk2y0bM4cX7lirelDXxbY1xjOAVfNmeZYa+2caW3ASe/81toHgAcA+vv7dZ4ty647EWK4UKM3FV7uUqRFzf3W/pU4m1aI9a9qCyLn5uBH7z7jcb1vkenL7Tdvhs/8cLmrOL07N6T4zv766dNPXNl8PzvY1B7h5fH6ifXX77limas51e2XdfHonhFWt8dPCXwAm3tSje6SQbLxEBu6ErPTelIRxtNRPGtZ3RZbcP2ZWIjr17VRqrqko0H2jeTJFWus64hz5+XdrOuI8+Udx9nUnWBTdxLPt1y9Ks3e4TxbelJsXZMh7AToToUJBx0SYYeQEyARDXLlygwbu5P8w2MHCRjDDeuy7Dw6RdXzuXJFmls3dbChK8lYvsrtmzuZKtcoVT32j+W5dmWGq1ZnsRbiEYd0LMgTBya4akWSnkyMjmSYqmtxAoZH94xQqHn0psOs70xxZLyIMfWuro4J0J2K4FnLeLFCKBCgUHWZLnt0JsOsaUtwfV+Wa1ZneOH4NJFgD7uOTQKW3nSMeDjI4VSBo7kya9qibOxOcWAkz5HxEomQQ2cmyuh0BSdgKJRrVDzLho4EgaChUvPo60hw28ZO1nUmCDoBjk2WODJeYG1HnOtWZ6l5llWZOMVqPZSv7UjQmYowPF3hqpUZLutJ8tLgNNGgw4bOBI2MRThoWNMeZyxfZf9Igc09Sfo64jzkW3rSUXrTYSqez8buJJlY6KTXfHVbnHzFIxgwbOhKYowhV6qyqSt12uNwU1eKl5kmEwuTbHQD7U5FGctUqXk+a9rj53ZgA+ZEzlp6xpjfBkastV8wxvw0sNpa+8nGtIettXc0hr8M/KK19rRfAfX399vt27dfiLJFzkl/fz9zj80LcdJ+Jsu9/VfrYq//1Trfz3/+8SnSLHRsSjPT8SnNyhjzlLW2f9H5lir0NS7M8q/AlUDSWus2ftP3buDDwBPAOPABa+1Dxpi/Aq4BHCBrrT3j1z+dnZ22r69vSWoXeTUOHjyIjk1pVjo+pVnp2JRmpuNTmtVTTz1lrbWL3pFhKbt3jgNvAr44M8Ja+7Qxpkz9d3yPAb8KvASsBoapd+mcAmrGmLC19rSdXfv6+ma/cZn5Jvwf7k5z++3N9YNgaW1zW2FmWlTmfhs4Mz0A7G/CFqeZ+laE4bE/ar76+v/460yVXT7zzht4/dXdy13ORcX3LccmS4SDAXrSJ7oo6dtqaVYLvXe+5bI0n/715vtc33DvNnzgb3/9St54WXN1kD527BhvuH8HBtjbhJ87n/nWi3zkm/uBi6snxszxWXG9+oVHbL2r46psjELVY6JQpTcTZffgFAdGi2xdnaZQrV/pMRkJsr4rOXtRmNHpMi8MTHFkrMihiQIHRvOszETZ0pMmG4tQqrm0JyP0pKNMNa5Q6Xo+2XiYzkSIp45M8tLAFIOTJcquRywc5IreFJu6U+RKLjuPTDA6XSYSdFjVFmVDV5JYJMSWnjTd6QgvHs+xb7RAeyJMMhwkEQly1co033t5lL1DeWqez/BUidF8lZ997Wr6ulN4viVXrFGsuhzPlUhFQ4wXqhQrLljL7uE8ybDDL9y8jpprefrwOOlokBWZOI8fGCMWdliRjdGbjrG+K8GewSkKVY/xQoW2eJgVmRirsnEy8RDlqsczRyYolOu/1SvXXFKxMOs7EiQiQSquz6q2GGP5Co/uHWV9Z5yAMVhrqXgeO4/k2NyV4o7LuwkEzDIfOUvPGPP02cy3ZKHPWlsGysaY+ePfZ4y5DviZxkVbnjHGpKi3CN5prR02xtwPbAF2LbaduSfdv7RtioPN99kgMvuj52aydc7/OwOn/y3xsvmJ+x9htFD/8fSv/OOTujrqOTo4VmD/SAGA4FpDxwIXFBBpRjf80Yn3pq/vab4LfVzxH7fNvqf/+t++wMGPNlfoe/39O/Aaw5f94Tb2/H/N9d45E/gALv8P23jpvzRXfYt5/vgUxydL7Bma5sreNFMll9F8Bc+3PD8wyTefH6Zc8/j2S4OsbU8w1YgOLgAAIABJREFUMl1hXUeCW12frWuyFKsu33xhiO/sHualwWmGp8qN38pBVzJCOh4i7Diko0HWdMSZLFYpVOoXNlndVn98cKzA/uE8Va9+e4Wgge/uGWVlJspUuX4LhpmLq0RDDtlYkI3dKa5cmWZjV4JvvTjMkfESQcfQmYxwWU+KZ46M88juUfYM5am4HlOlGiEnwPZDE/zhj13Ji4NTlKoeuwenKdd8itUarmcpuR6lSo1izScSCvLSUJ7V2RjPHZ8iGgpQaFysplTz6M1EubGvnVjYIVd0eXFgiprnE3ICXL8uy80bOrltcyff3j3MkwfGef7YFFXfw/Mt6WiImzd0kImFWJmNUXY9/v/tRzg+WWa8UOGaVWnGCy4HR/PkyjW6khGSsSA3ru9Y5iOmeSzXzdkXumhLlnor39xxJzHG3GOM2W6M2T4yMnJhKhURERGR885cxI0wZvY/J48zJ89xyjzzps4baU4Zfz530enWNfd1OPU1MScNLvaaLTTZzP49l51xyqbPKGCWK9JcPC74zdkbvDnDaWCy8S8NlOeMO8lCV++cexWwf7g7vaRFi7xSzXhtzx1z/t9Z0YQFPvjeN3DTR77BZKnGX7/zhuUu56LT15Eg5ASIBANq5ZOLypP/+e6Tunc2mxf/5G423rsNj3r3zmbz3fdu5Q337yAQoOla+QD+4hc28IHP1Vv7XmzC+hZz9coMHYkwV61I4wQCrMxGKVTrLXC9mSirsnEOjp3avbOvs34/tng4yI9c1cuatgRHxvMcnihwYCRPbybGlt402ViYcs0lm4iwIh0lV3Yp1+q3KWiLh+mIh3nqyAR7B6c5PlGk4vnEIg5bulNs6skwWayy6+gkI1NlwsEAazpibOhKEA2F2dKboisVoa8jwf6RPG2JSL17Z9ThyhVp1ncm2TuYx7cwmCsykq/wM9evZn13mmvXZJkqVcmXXQZy9ZvXjxaqlGouxsKe4WkS4SA/f+NaXM/y1OEJ0pEgq9pj/PDlMaJhh1XZGD2ZGOs7E+wdmubOy7uYKFTJxEOszMZZmYkRcgK8cUs3HYkwt23uoOZayjWPTCxMX2eceDhI1fNZmY3xrts38L29o2zsTmAtYKHiuew8mmNTV4r+dc139drltORX7zTGPAzcZa1154z7JPB56jdi32atvcMY8wFgAPgC8B3gzdbayunWq6t3SrPSb6akmen4lGalY1OamY5PaVZne/XOJWvpM8aEgK8B1wFfN8b8IfXbMLwX+FPg74EYcF9jkc8AnwPeCzxwpsAnIiLnx6V+SwwREZFLwVJeyKUG3DVv9OONaUeBN86bfwp421LVIyIiIiIicinSrx5FRERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLUyhT0REREREpIUp9ImIiIiIiLQwhT4REREREZEWptAnIiIiIiLSwhT6REREREREWphCn4iIiIiISAtT6BMREREREWlhCn0iIiIiIiItTKFPRERERESkhS1p6DPGfNwY86gx5hPzxv83Y8zDjX8TjXG/aozZ3Rj3p0tZl4iIiIiIyKUiuFQrNsZcDySstbcbY/7KGHODtfZJAGvt7zbmeQ3we3MW+zNr7WeWqiYREREREZFLzVK29N0CPNQYfgi4eYF5fgr433Me/64x5rvGmDcttEJjzD3GmO3GmO0jIyPnt1oREREREZEWtJShLwtMNYZzQNsC8/wo8G+N4S8B1wLvAP7cGOPMn9la+4C1tt9a29/V1bUEJYuIiIiIiLSWpQx9k0C6MZxuPJ5ljNkMHLPWFgGstZPWWt9aOwLsAXqWsDYREREREZFLwpL9pg94DHg38AXgLuB/zJv+U8AXZx4YY9LW2iljTAzYDKj/poiISJPqu3fbq1r+4EfvPk+ViIjIYpaspc9a+zRQNsY8CvjW2ieMMffPmeVtwFfmPH6/MeYx4GHgo9ba2lLVJiIiIiIicqlYypY+rLXvm/f4vXOGXz9v2oeBDy9lPSIiIiIiIpca3ZxdRERERESkhSn0iYiIiIiItDCFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLUyhT0REREREpIWdMfQZY9ZeqEJERERERETk/Fuspe9LMwPGmH9Z4lpERERERETkPFss9Jk5wxuWshARERERERE5/xYLffY0w2fFGPNxY8yjxphPzBv/IWPMTmPMw8aYDzTGpYwxXzHGfN8Y88vnui0RERERERE51WKh7zpjzJQxZhq4tjE8ZYyZNsZMnWlBY8z1QMJaezsQNsbcMG+W37PW3mGt/YvG43cBnwdeD/ymMSb8Cp6PiIiIiIiIzHHG0Getday1aWttylobbAzPPE4vsu5bgIcaww8BN8+b/jFjzEPGmK1z57fWesBOYMs5PhcRERERERGZZ7Grd243xnzCGPOjxpjoOa47C8y0BuaAtjnTPmmtfS3wHuD+s5h/pp57GjVtHxkZOcdyRERERERELj2Lde+8GfgicAfwiDHmq8aY9xljLjuLdU8CM62B6cZjAKy1442/e89m/jnLPWCt7bfW9nd1dZ1FCSIiIiIiIpe2xbp3utbah62191prbwJ+A5gGPmKMecYY85dnWPwx4E2N4buAH85MMMakG387geDc+Y0xDrAV2P1KnpCIiIiIiIicsFhL30mstQPW2r+11v4s8Frgn84w79NA2RjzKOBba58wxsx05fwzY8z3ga8A9zbGfQb498CjwN9aayvn+FxERERERERknuCZJhpjvnym6dbaty8y/X3zHr+38ffdC8w7BbztTOsTERERERGRc3PG0Ef9ippHqN9K4XFOvlm7iIiIiIiINLnFQl8v8GbgncAvANuAz1trn1/qwkREREREROTVW+xCLp619t+stb9C/UqeLwMPG2Pee0GqExERERERkVdlsZY+jDER4G7qrX19wCeB/720ZYmIiIiIiMj5sNiFXD4LXA18Dfiwtfa5C1KViIiIiIiInBeLtfT9ElAALgP+b2Nmr+NiAGutTZ9uQREREREREVl+Zwx91tpzuo+fiIiIiIiINBeFOhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLWxJQ58x5uPGmEeNMZ+YN/4+Y8xjjX9vaoz7VWPMbmPMw8aYP13KukRERERERC4VSxb6jDHXAwlr7e1A2Bhzw5zJf2+tvQV4K3DfnPF/Zq29w1r7+0tVl4iIiIiIyKVkKVv6bgEeagw/BNw8M8Fae6AxWAHsnGV+1xjz3ZnWv/mMMfcYY7YbY7aPjIwsRc0iIiIiIiItZSlDXxaYagzngLYF5vkQ8OnG8JeAa4F3AH9ujHHmz2ytfcBa22+t7e/q6jr/FYuIiIiIiLSYpQx9k0C6MZxuPJ5ljPkpoMNa+zkAa+2ktda31o4Ae4CeJaxNRERERETkkrCUoe8xYKab5l3AD2cmGGOuBX678W9mXLrxNwZsBtR/U0RERERE5FVastBnrX0aKBtjHgV8a+0Txpj7G5P/jHpL3teNMQ82xr3fGPMY8DDwUWttbalqExERERERuVQEl3Ll1tr3zXv83sbftyww74eBDy9lPSIiIiIiIpca3ZxdRERERESkhSn0iYiIiIiItDCFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLUyhT0REREREpIUp9ImIiIiIiLQwhT4REREREZEWptAnIiIiIiLSwpY09BljPm6MedQY84l541caY75tjPmBMeauxriUMeYrxpjvG2N+eSnrEhERERERuVQEl2rFxpjrgYS19nZjzF8ZY26w1j7ZmHwv8EHgWeBfgYeAdwGfB/4Z+I4x5n9aa6uLbee++7bx2Up9OAvs+Ojd5/25iJxO373bZocPLnDsLTZ9uc3U1xmD7fc1X33X3fdvFGse//XfXc3br1+33OVcVMpVlx/sHycecrh5Y8dylyNyTmbem25cneQLv/OGZa7mVCfqgy/8TnO9d37qe4/z0X8dBeCff6qTm266aZkrOtlHv7yLT/3gMNCcn4s/2DvCXz6yj+tWZ/h/f/SK5S4HgKrrc2isQKHiMjxdoSMZZrxQoycd4drV2ZPm3TM4xfdfHuPaNRm2rmnjh/vGcH2fWzZ2EA46s/ONF6ocnywxMFni4FiBdR0JVmRjGCzBQICedJT9o3leGpzGWks2HmI8X+XIWIFdxyY5PFFmdTZKNORwbLJMzXXBBMjGw3QlHKYqFqwlX3Vpi0XY1JMkaAxjhSo13+eKFSk6EhH2j+Y5MFLEBKDqevg+bOxKUHEtr+1rY31nksGpEl/ecZTJgksq4jBeqlGsuASMIR0Pcf2adlzf5+hkCdfzuW1TF6+/rItExOGfnzzCQK5EVyJCMhoimwjx4rEpRgoV3rCli2tWtVHzPI5PlklFHCZKLomIg+tZPN+yui1G1fUJOgFWZqKMF2scHS+yriPOymyUH+4fx/UtnYkwZddnbUecrmSEg2NFSlWXXLHGcL5CJh5ifUcC31omizUKFZeOZJjOZJRcqcbKbJRUNDT7+pRrHofHi2RiIXrS0dnxh8eKVD2f9Z0JnIA5p+NoyUIfcAv1MEfj783ATOi7FniftdYaY6aNManG/L9trfWMMTuBLcCuxTYyE/gAJs9f7SKv2gfmBL5mdMfHvjo7PFpaxkJO4x3//bvkKh4A7//Ccwp95+gH+8d5+tAEAOl4kCtXZJa5IpGzc+uffG12+Imj+WWsZGFzv8x74ugyFnIaM4EP4Oe+OMrB5sp8s4EP4Kr/tI3n/7i5gt+HvvICI9Nlnj+e444tndywvmu5S+Ll4TyHxwt8d88IiXCQY5MlVmRjJCIOPenobCiouj7/+PghxvI1XhiYolj1eHz/OABBJ8DrNnUCYK1l55FJ9o/keWTPCKWaRzzs0L+uDc+H1e0xdh6d5NBoge2HJqh6PiHHkC97DE6VmCy6WOB4rkIA8OfUemSiDICZM95QYOexSUKOoeJaAga2H5qgLR5mZLpCoeLi+xYPCBp48uAE2XiYZ4/leG1fG4+9PMbxyRJl1ycAeBZsY92OgeePTREJBpiueISCAXYP5cHA8FSFbzw/yFihSjAAbfEIxsDQVBkTCPDC8SneeeNa9o0UyMRCvDySpy0WouL61DxLZypMAENnKkIi4pCKhShXPYamKgzkyiQjQXYPTXN8skQ2HiIZCTJRTLMyG2NoqszOIzmOThSZLrtk4yGu6E0TjzgcGClQ8ywrGqF5VTbGWKHCrRs7Z/fjiwNTjOXrbV/pTSFiYYfhqTJ7hqbr+9TAxq7kOR1HS9m9MwtMNYZzQNucaY611s6bdqb5ATDG3GOM2W6M2T4yMrI0VYucJ3/RhN9gzrW589zeLC60lW0nvtlynDPMKAuKh07stFQ4dIY5RZrL6kx8uUuQC6Qt1nzvTdFw/b0zEDBkY5FlrqYuHAwQwBByAgQChkgogGMMjjFEgidO5QMGYo33/rATIB11MI3GoFjo5FP+kBMg5ASIBB1MYxshxyHoGJxAgFjYIejUtxNyDBEnQMip1zC3fSmwQJIwjVrmDjtOACcQIAAEjCHYqD1gGvME6qEkEAjgBOrjQk6AiOMQDdW3aaiHnbnbNwaCgfpzCZj6OsJOgHDQkI4F6+sNGIKOg+M09p1TryMUChAPO0RD9f0UdgIEnQDhYICgYwg6ASKhAMGAIRgIEAs5hJz6Ew46hlSsvq+dgCEaCtSfV8AQCzoYDKGAaezX+mtVX28AxzH19TeWm3m95r/mAI5jZvdxaM488+c/G0vZ0jcJpBvDaU5uiPPmDM9Mm5m/vMD8AFhrHwAeAOjv77dQ7xow861bM3YTkNYWAmqNvxebv/6N13P1H24j78P/dduK5S7nFPf/+xsZ/+vvcXC0zJfvec1yl3PRuXljB+l4kEQ4yJoOnUTLxeMLv/MGXvOhbUyU4ZO/uGm5yzlFs593NHt933n3ldz16RfIxg3f+8MfWe5yTvE3v3wDn37kZW7e2MHm3vTiC1wAG7sSpKJBrl2TYTRfpSsRYqRQoysZIRsPz84XdAK8546NPHN4kitWpOnNxEhFw7ieZXPPiS96jTH097WxoSvOLRvbOTZRbzlMx0IEMPhY2hNhrl9b4XUbO/HxSUVClKoeA7kS+0amefH4NFt6k0RCDofHC5SqPkHHkI2EWNUZZ3iqSsiByWKNjkSETd0JACZKNco1j8t708TCDkO5CofHCxhjsNajWPXZ0pOkULVcsTJNRyLCz9ywioeeH6JQ9UiFHSaKNYq1GtZCNhZh65oMhZrPeKFCqeJz44Z2NnWniIYcNnYlGZ4q052OEg0GSMeCHB4rMZAr87rNHbQlIvzIVYbjuTId8TCjhQrJSAispVDzWJmNUq75BAy0JyIUqx4j02W6U1Gy8RArM3EwlmS43kLYmQqTiobIJEJcvSpNoeKSK7mkokE6kxFc33Lrxg5KNY9UJEgmFmKyVKMzefIXDFf01p97Mhok0uiW25YI09/XRtXz6U5FOVfmRIPb+dX4Td+7rbXvNsb8JfA/rLVPNKZ9kvrv954Ftllr7zDGfAAYAL4AfAd4s7W2cprV09/fb7dv374ktYu8Gv39/ejYlGY1//jse5XdkJvxpFIujPN97Oi9U5qZjk9pVsaYp6y1/YvOt1Shr1HEJ4DrgZ3W2t8xxtxvrX2vMWY18PdADLjPWvsNY0wa+CJwO7AfOGytPe1XQJ2dnbavr2/Jahd5pQ4ePIiOTWlWOj6lWenYlGam41Oa1VNPPWWttYv291zS0HeujDF9wEestb+42LwzLX35ssuXnjlK1bO8fesKOpPn3twp8kp95F9f4IkD49y2qYPff2v9Kl9zvw18ePcwLw1Ms3VNtimvoPjhLz/HwbEi73jtKt527arlLucknm959ugkpZrHVSsyZOIXYyfa5jNzfH7p6SP86df3kIwE+dtfu57VbanlLk0ucWpJkWam4/PsVF2P//XUUV4cmKK/r423XLWCaOjsf5g/mCvx1V0DREMOP7l1FfHIUv4SbXl4vmXXsRzFikss5FCoevR1xlnd9sp+inG2LX3NeHP2Oxv39nv/2cz80uAUg1MVxgtVnj06tfgCIufRd/eOUKy6fGv38CnTfN9n+8EJ8hWXJw6OL0N1Z7ZncIpdx6aYLrt8bdfgcpdziolilbF8lWLF48hEcbnLaTn/+PhhSlWXkekyn3+8CS9BKCIiF53D40VeOD7FeKHGziM5hqbK57T8jiOTjBdqHJ88caXKVjNZrDI6XSFfdnn6yATlmseB0cKSb7fZQt8AcBlwJ3CXMebauRMXunpnX2ecaKh+lZ2NXYkLX7Fc0mYul3tZz6lXwgwEAqzvrH9rs+kcL6t7IazNxulJ1384vHVNdpG5L7x0tH6J4kAAulPNcQW1VnLbxk5MwBAJBnnzlT3LXY6IiLSAFekYvekoTsCwtj1OeyK8+EJzbO5OEXQMiYjD2ha9CFmqcX7jOIb1nfXsMvdefEulqbp3zmWMeQ+Qs9Z+bqHpcy/k4rr1O4EEg82WYeVSMDpdpDN14o1pfheQctUlGm7e7gmThTLZRHN2i7bW4lvO+Qakcnpzj8+RqQrpCEQiCtWy/NR9TpqZjs+z5/uWSs0jEnIIvILP75rrz97moVXNPb9xvfrN31+ps+3e2VRnosaYlLV2pi33dcD9Z7Ocwp4sp7mBbyHNHPiApg18UL+stKO8t2S60gp7IqejK9uKvDKBgCH2Kn6LF7oEzuvnnt+8msB3Lpptr95ujHnKGPMD4Li19vHlLkhERERERORi1lRNENbarwJfXe46REREREREWkWztfSJiIiIiIjIeaTQJyIiIiIi0sIU+kRERERERFqYQp+IiIiIiEgLU+gTERERERFpYQp9IiIiIiIiLUyhT0REREREpIUp9ImIiIiIiLQwhT4REREREZEWptAnIiIiIiLSwhT6REREREREWphCn4iIiIiISAtT6BMREREREWlhCn0iIiIiIiItLLjcBYiIiIjM13fvtle1/MGP3n2eKhERufippU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFqbQJyIiIiIi0sIU+kRERERERFpY04U+Y8wHjDHfW+46REREREREWkFT3bLBGBMBrjvX5Tbfuw0XOKDLM8sFdvfHv8XzQ2X6VyX4X++945TpP/mJR9gxkOfOjW383btuvfAFLuKNH/sWBybKfPCtW/iNN2xa7nJO8cdfeY59wwX+/N9dQ2cmvtzltJQDBw5w56dfIObAi3+i9065sK7+4DbyLnzwzRv4zTddsdzltCTd8uLiUqy6vDQwRcXzWZGJko6GSUQcRqYrWGsZK1RZ1x6nLRGZXabqejx3LEckGKAtEaE3HWWyVKPierTHw4zkK7QnwsTDC5/u+75l33CeY7kiV6/M0JmKnra2I+NFChWXmutDwFKu+ly9KsO+4QIvDU7h+T4Vz9K/ro3r17ZzZKLIobECQ7ky44UqazpibF3Txsps/bN8ZLrCYK5EIGBYmYnRlghTrLqMF6pkY0GeOjxJ0MDajiTRUICnDk1wWU8K17dUXJ/LupO8PDLNjsOTbO5OsrknTbHm0RYLMV6s0pmMEA05jOYreL6lKxlh/2iBmuuTiQd5/tg0m3oSrO9Mzj7PyWKVfSMF1ncmaE+EZ8dNFms4xtCRqu/LwVyZoGPoTEYW3F/NqqlCH/CbwGeBPzrbBTbfu41aY7jv3m16k5IL6vmhMgDbjxUWnL5jIA/Ad/ZNXLCaztZHHtzJ/ol6/X/8td1NF/r++pGX+exjhwD4+c88zkO/d+cyV9Ra7vz0CwCUPHjNh7/KM/f92DJXJJeKn/7kd8i79eGPfHO/Qp9c8nzf8t09I3x11wBl12dNW4xbNnTiBGCq5PLUoXHSsRArMjF+4jWrSEbqp+/feGGIXUdzDEyWuGNLN2s740wW6mfFpapLLBwkFAxw+6ZOAgFzynb3Duf57A8OkivV2NmT4z13bCIcPLkToLWWH+4bY/vBcV4cnMYJGCYKVXoyUbY9O8BgrsLuoWkKlSrRUJBvdSb5jdvWs3tomu+/PMqB0QK+hUw8xNuuWcE9r99Aqebz7ReH2HUsRyBguG51lruu6Gbn0RxV12fHkQkOjBYZzVe4Y0sXuwemqfmWinuY9Z0pIkGHZzNRHt49zMGxAtl4iLdctYK+jgQj0xW6UhESkRKbe5LsODwJQMDArmM5yjWPYxMlPAvZWIj33bWZ7nSUcs3ji88cYyxf5dlkmHfeuBbPtzx1aILdg9MkIkHWdybo64izZ6h+bveatVk6LqLg1zTdO40xIeAN1tpvn2Gee4wx240x20dGRgBwL1SBIudo//79y13CGQ1NVZa7hDMaL1Rnh6ueXcZKWl+5qv0rF85kubb4TCKXEAu4no9v6wHQbXzmVV0f31pcvz6T51s8/8T7tev5+Fh8wLM+tZo/O23mc9P3Lad7h3c9H9fWl3H9+rZOqc2Cay1eY/uu5+P5Ft+HimtxfR9svQYLeNZScT1qnqXm+VhrsdbH9y2etbiN5+BZi2/rodKfGd/YfrnxPCxQ83yqXqNGr74MMLsNAM+HSrXWeN5+Y9zJ+6ra2L+etVRm5rF2dh22se9nlvVtvR5rwbf2pPpnzF3/xaCZWvp+CfjcmWaw1j4APADQ399vod6lc6YLw2d+Td8WyoWVCsF0DbILfNGzYcMG2mIvMlGCddnQhS9uEff/0o089MFtlFz48au6lrucU/zBj13JnqE8A5MlPv4L59zrWxbx5z9+Jf/PV+qtfereKRfSt3//R2Y/t2/rSy9zNSLLzwkYbtvcRTQUpFLzWNsRpz0ZIRsLMZArsbk7yVixxqauJJnYifOJu67oJRsP4wQMK7Mx1rbHGZ6uUHV9OpNhhqbKdCYjOAu08gFc1pviZ65fzaHxIjf0tRMNOafMEwgYbuxrpy0e5rXr2nB9vxH+LFtXZ3hpaJpnjkziuh41D27d1MGdW3rY3JOnrzPOobECU6Uafe1xbt3cRTZe7zb5uk2drG6LYQxs6EzSkYxw/Zo2RvJltq7J8MjeUQyWq1ZmeevVvTx+YJwtvWkMUHF9rl2VZktPih/uH+ey3iTXr22j7PpsXZtlslilJx0lFQ1R7a3X25uO0pOOUnV9UtEgO4/muHJFilVtMQBiYYe3XN3LnqE8l/UkZ7vEXrM6Q08mQjAQYGUmRioaJGAMQcfQnV64O2yzMnaBVL8cjDEfA7ZSD/Y3Af/ZWnv/6ebv7++327dvv1DliZy1/v5+dGxKs9LxKc1q/rG53L9JW+7tv1oXe/3NRu+d0qyMMU9Za/sXm69pWvqstX8wM2yM+d6ZAp+IiIiIiIicnab5Td9c1trblrsGERERERGRVtCUoU9ERERERERzcrm8AAAgAElEQVTOD4U+ERERERGRFtY0v+kTERERkdagC8mINBe19ImIiIiIiLQwhT4REREREZEWptAnIiIiIiLSwhT6REREREREWphCn4iIiIiISAtT6BMREREREWlhCn0iIiIiIiItTKFPRERERESkhSn0iYiIiIiItDCFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWFLHvqMMSFjzGuMMd1LvS0RERERERE52XkPfcaYTxljrmoMZ4CdwN8Dzxhj3nm+tyciIiIiIiKntxQtfbdba59vDP8asMdaew3wWuD3l2B7IiIiIiIichpLEfqqc4bfDHwJwFo7uATbEhERERERkTNYitA3aYx5mzHmNcDrgH8DMMYEgdiZFjTGXG2M+YEx5lFjzN8ZY8wS1CciIiIiInLJCC7BOt8NfBLoBX53Tgvfm4Btiyy721p7K4Ax5u+AfuDJMy3wk5/4NjsGSgC0ReGZD939KkoXOTd99544pA9+9NRjb7Hpy+nw4cO8/i93AeAA+5qsvsFcnnd99hmmyy7vuXMjP3fD2uUu6aKSK9XYdTRHOBhg65os4eDJ3/HNPTZf1xfln37rTRe6RLlEHTt2jNfdvwOAqAMv/UlzvfeIXAgvD0/z0IvDHBzNMzJdpSsV5hdv7uOynhTPHJ6g5lmuXZNhKFfm2GSJdR0J1ncmFl3vobECB0YL9GaibOpKsuPIJKWaxzWrMmTjYQCKVZcdRyaZKtUIBgK0JcJsXZPFCSzc1mKt5bljU4wXq1Rdly8+fYydRycpll3CIYcV2SjZeIiaZ7miJ01HMgzG8MbLu/nO7mG+t3eUa1ZluGl9O4/sHaVUdblmVZaVmSjPDeTIlz0CxvLS4DSdyShvvrKbcNBhXUeCfcPTPLjzGPuGC7iez7qOOE4gwGSxxhUr0vzka1aSjYd5eTjP4/tHeeLAOOWa5dbNHdy2qYPH9o3j+5aN3QnWdSS5dnWGVDR0xn3o+ZYHdxzl+GSZ11/WxbWrswCUax7PHJ7EWsvWtVkCxrDjyCSeb7luTZZkZOFYNV2u8ezRHE7AsHV1ht1DeSZLNS7vTdGTji76mp4v5z30WWv3AD+6wPivA19fZNnanIcV4Mhi25sJfAAT5bMuU2TJ7dq1a7lLOKP3f/ng7LC3fGWc1teeG2E0XwHgwR3HFfrO0WCuTLnmUa55jBeq9GZO/8Hy/YN685QL513/vHd2uNyMbz4iF8CuYzkmC1VeOD6F61nKNY+dRyfpSIaZLrsAHJ8ocXSifp57aKxwVqHv8HgR17McHS+RiYWYLNZPrY9NlmZD39BUhWLF48h4iUTEAWCqVKMtEV5wnaWax9BU/XPi4ZdGOThWZLxQw/V8Aq5PzfMZmQ4SDzsETZ6BqRDrOxM8sX+MJw9MUK75PHt0srHtMuP5KuloiAOjeaw1HBgt4Po+I/kKrm95ePcIb7y8h30j0+w4MsmRsRKDuRLGQLnmz36JuW8kz84jOdZ3JZgoVtl+aJLhqQpVz7JnaAprLaPTVSquT8X16U7FGMiVFw19o/ky+0eKAOw8kpsNfcNTFQqV+mszmCsTDgbIl0883tSdXHB9g7kypao3+/qMTNfPbY5OFC9o6FuKq3d+Yc7wx+ZN+8ZZLP92Y8xzQDcwNm/aPcaY7caY7SMjIwD0tZ3IrVF1BpUmcs011yx3CWf0/rf2LXcJZ/TmK7pIRYMEHMObr+xZ7nIuOt2pCI5jiIUdsvEzf8BtaL9ARYkAH/rpzbPDS9HdSORisKU3RTzi0NcRpz0ZpisZ5vLeNG3xMLGwg+MYejNRVmSjGAOrsmf8hdSsFZkYxkBvJkpHIkI84uAEzEnhoisVIRwM0JOOkI2HSUaDpKKn/78xGnRoS4QxBm5a305PKkoyEiQaCpAIB+nJRFnTFiUTC7GmPcbGrgRBx7B1bZYrV6QJBGBTd5LXrMmSjYXoSUfozUR57bo2YmGHVe1RNnQlyEZDZGNhblzfhjGwti3Olt4U3akIbfEwqWiIdR1xVmWjJKNBVmWjXLEyxYpMjGQkyJYVKTLxMOlYiLVtCfrXtdOWCNOVCrO+UVNPavGQ1Z6IsDIbJRCAy1ecCHIdyTCRUIBQMEBXKkJHIkIkFCDoGLpSkdOurzsVJegYoiGH1W1xsvFQ4zU6u9f0fDHW2vO7QmOesda+pjH8tLX2+oWmncV67ge+ba394kLT+/v77fbt289LzSKvxksvvcTll18++7i/v5+5x+auXbuaOgAePnyYtWubtxWtWq0SDi/87aOcu7nH5+OPP85NN920zBXJperYsWOsWrVq9vH89865XZBfiVfbpX65t/9qLXf9y739823+8Xk+WGsxxuD7PgCBwMJtMTPznet6z2b5c1n3/Hp938dxHHzfxxgz+2/+ej3Pw3Gc2WVmxs+sKxAIMJNHrLWzj2fmm9nezLS542f22cz8nufNjjPGzK73lVwmZO76z7dzfU3PxBjzlLW2f7H5luJLtjOlyDMmTGNMxFpbaTycAkpnml+kGcwNfAtp5sAHNHXgAxT4lpACnyynuYFP5FI0c9K/WLA413Awf/4zLX8u655f78zfmUB3uvXOnT7/uc4NaAv9XWiZhcbPzD+/llcTrJYq8MGrq+uVWorQF29cuTMAxIwxMy19hkWu3gn8qDHmA43hvcCi3UFFRERERETk9JYi9A0A/5V6yBsE/nzOtDPeq89a+yDw4BLUJCIiIiIicklaitD3B8ARa+0AgDHmV4B3AAeBDy3B9kREREREROQ0lqKz6qeo324BY8zrgf8CfBbIAQ8swfZERERERETkNJaipc+x1o43hn8OeMBa+y/AvxhjdizB9kREREREROQ0lqKlzzHGzITJNwHfnjNNt+QRERERERG5gJYihH0eeMQYM0r9lguPAhhjNlHv4ikiIiIiIiIXyHkPfdbaPzHGfAtYAXzDnrj7ewB47/nenoiIiIiIiJzeknS3tNb+cIFxe5ZiWyIiIiIiInJ6S3ereREREREREVl2Cn0iIiIiIiItTKFPRERERESkhSn0iYiIiIiItDCFPhERERERkRam0CciIiIiItLCFPpERERERERamEKfiIiIiIhIC1PoExERERERaWEKfSIiIiIiIi1MoU9ERERERKSFKfSJiIiIiIi0MIU+ERERERGRFtZUoc8Yc5Mx5gfGmEeNMR9f7npEREREREQudsHlLmCeQ8AbrbVlY8w/GWOusdbuWmyhvnu3AfDpO4O85S1vWeoaRWb9+H97mF2DBa7pTfCV373jlOkzxybAwY/efQErOzs//6nvsev4NB9862beecum5S7nFPc9+Bz7R/J84mevoz0dW+5yWsrHtn2Dv3q0BjTnsSmt7Zr7tjFdgd+6dS33vv2a5S5H5KxVXZ+BXAnftziBACuzUYLOiTaUwVwZz1pWZqIYYxZcx1i+wv6RAt2pMOPFGiEnQHc6QqXmszIbwwmcvJznW45Plqh5PsNTZbpTEYbzFXrSUdZ3Jk+ad6JQZeeRScJBQzzsMF6sEXUCpOJhupIREhGH8UKVRCRIoeLSk45ScX0mChUshqrrUar6PH98ksf2jXB5T4aebJQb1rXj+pa9Q9OMF6uMF6r0r2ujXPPZPZjj6GSZVZkoazuSpOJBCmUXMNyysYNsPIzv+3zrpWECxnDnlm48azk0WmQsX2FoukzV89nYmaBY88lEg3jWkomFCRgzu4+LVZehqTIj02UGJssMTZUZL1TYuradmufRlYpxeW+KbDx80j6ZLtcYL1Trz7Xm88LxHMYYrliRJhMPMVGoMl12T3ktF+P7lmOTJQIBKFc9Kq6lNxMlGwtxPFfC9SzGQHcqSizsnPV6AWqez8BkmXQseNLzGZ6q76tV2dhpj6/TaarQZ60dnPPQBbzFlpl7Uv3u77gcVOaTC2jXYOGkvxeTv3l4Nz88mAPgPzy4u+lC36cf2cv/fPIwAL/4d0/y1fe9fpkrai0zgQ/q76MKfnKh/ObfPMZ0pT78qR8cVuiTi8rzx3Mcmyyxd2iaK1akyVdcrlyZBmB4usxzx+qfq75vWdMeP2X5YtXlG88PcmyyzFS5SjAQIOQYulNR1nUkKNU8LutJnbTMvpE8B0YKPLp3hHjEYTBXpicVJR4J8su3rKMjGQHqQeFfnx3gyYPjTJWqhJwANc8SdGBte4LrVmewQCIS5MBokQ2dCY5MFKm5loFciYlCjVypykSxyjdfGKJc8/nmCyNcsTLD918eJRsP88LxaQ6M5omFHb684zgdqQgvHs81tmNYlY2TiYUoVV3ak2EOjxd59xs28tALwzy48zgAFuhNR/ne3lGeOjzOkfEi8bCDYwKs70xQqLqsaYuDgetWZ5mu1LhqZYZnDk+yZ3CaR/aOMJ6vcGisSMgJ8ODOAda2J8jGg7z9ulXcdWUPkaAz+zo8dWgC17McnSgxkCvx+P5xwHLThg7efEUvTx+ewFqYKte4elXmrI+FfSN5Do0VeXkkj+/7VFzLVSvTrG6Lc3yyxPPHc6xtj9ObiXHLxo5zOs5eHJhieKpCIAC3buwkGnIYzVd49mj9+HI9S19n4pzW2VTdO2cYY64FOq21L8wbf48xZrsxZvvIyMgyVSciF5pv7XKXICLnSbG26Pe5Ik3Lzv07/6NpzuOz+djy7YnFZte7wHIz46y12DnLzYw7uQR7yjqZXX7udk7d0Mz6T3oejQUtYP15889Zp7WNOu2JKuycevw5K7X+/A3Mr21+XfOe30yd82u3p3lec5eeKdLOPN/zcX5h8edse+5rMPfxq97KqbvtnDRVSx+AMaYd+O/Az86fZq19AHgAoL+/30K9W9Lc7p0iF9LlnTFeGi1xeefF1/XwN+7YwoM7B3l5tMB/+rHLlrucU7z7DZs5MFrgyHiZP33HdctdTst5z+0hde+UZfG537qNK/7jNkpevXunyMXkqpVp2uJhrliRJhgwrMqe+PzvTke5apXF9Syr2xY+L4iHg7z5yh72DufpSUeYKNYIBQJ0pSPUXMuqBZbb1J0kGgqwoSvB8HSF7mSY4XyVnlSUzlR0dr6QE+Dua1awMhMl7DjEIgEmClWiYYdMNERXKkoyGmQsX+W61VkKVY/edJSq6zNWiGNtvbWwUHW5elWKH7w8xpbuJCvaE9y4oQPPt7x0fIqR6RJTVY/XrslSdi17h6Y4MFpkXXuM1e1xMvEwxYqLBV63sQuAuy7vwQDGGN50RQ+etYQcw3WrMxzPlah5lk3dCQpVj0w0iMWQjgZxAoHZfbJ1TZbeTJTLe1MM5MoM5cqM5Stcv66dqufTlYpw1crMbCsfQCBgeO26NsbyVVZkoly10mNFJgrWcPXqDNl4mK1rsvwf9u48WLL7Ouz793eX3re3v3nLzJsVMwAGG4cASYiEKFKbaUq0XLKkREvKpWLJ5XJJTlIxE7niOElVpHLZZYeVpMIkjp3SYjlxtO+UKDsSSRAAsS8DDGZ/+9Z73/2XP3pmOIPXA8wDBt2/7jmff/CA+/rNmYfbt++5v/M7p+FFPX/37+bIVIG0Y3PfbBEvjPHCmLlKlrFcilLG5fBkDsuymCml9/VzAU4dKFHKdChlXTJu9+8zVUzz4HyZ8Fp5536pXhnxoCilHOB3gH+stX763b73zJkz+tlnn+1PYELsw5kzZ5BzU5hKzk9hqneemzdv33g/PujDjEH/+R/UoOMf9J9/t8m1U5hKKfWc1vrMe32faeWdPwp8FPhlpdRfKKU+PuiAhBBCCCGEEGKYGVUPqbX+deDXBx2HEEIIIYQQQowK01b6hBBCCCGEEELcRZL0CSGEEEIIIcQIk6RPCCGEEEIIIUaYJH1CCCGEEEIIMcIk6RNCCCGEEEKIESZJnxBCCCGEEEKMMEn6hBBCCCGEEGKESdInhBBCCCGEECNMkj4hhBBCCCGEGGGS9AkhhBBCCCHECJOkTwghhBBCCCFGmCR9QgghhBBCCDHCJOkTQgghhBBCiBEmSZ8QQgghhBBCjDBJ+oQQQgghhBBihEnSJ4QQQgghhBAjTJI+IYQQQgghhBhhkvQJIYQQQgghxAiTpE8IIYQQQgghRpgz6ACEEEIIIYS4m5a+9Psf6PUXf+lzdykSIcwgK31CCCGEEEIIMcKMSvqUUnNKqW8rpTyllKxCCiGEEEIIIcQHZFpitQN8BvjNO33BD/6zr/L6hg9AwYFX/ntZjhf9c3P5SK9SkPc6PkjLy8s8+eUXgO6F4Jxh8b2xvMOP/e/PEEQJP/n4Ir/4+QcHHdJQubTd4rdfWCGbsvjxjx6kmHFvOX78S79PeO3rz5+c4Mv/ycf6H6S4J/3Lbz3Pf/v/rtz4d9OujULs10tXq2w1fY5MFnjhSpXzm03G8i5aw2475EA5w1P3TTNfyd54TZJonr+yyzMXdnjxSo2Zcpq/95njtP2YtzYaRLHGtmA8n+aRxQpKKQC++toav/KNS7y6WsMPE7Ipm3LOZSKf5sljE2w1Q56/vEs7iKjkUoznUsyNZXl4scyp2TInZgr83ksrfPvSLqWsy0wpw2wpw1wlw5++vsFLV6ukbIvFsRwn54qcmi1z32wRAK01L16tsV738MOYUtbl4YUKfpTwwpVdVmseoLm41aLpRTQ6Ic0gopR16QQJE4UUhyfzPHu5io3myWOT7LQCzm22KaRtTs4WuW+2yJmlcXKpW1MUL4x57tIu59YbrDc8FIqHFsocnylSyDh86/wOr6zUyacsnjw2xWOHxq79jqucW29g24rj00UOlDO8ulKnkHHIujYbDY+Ma+GFCeVsikMTOV5ZrpF2bD5yaIyUY9T62AdiVNKntfYA7/qJ/U5KqS8CXwQ4ePAgwI2ED6AZfeghCnHHvv3tbw86hHf1D37/4o2vTXzr/PqzK3hhDMAfvrbBL35+wAENmTdWGwRRQhAlXNhq8dBC5Zbj4U1f/+4b23y5v+GJe9gv35TwCTHs/Chmo969F317s8mFrRZ+lPDqco3JQobNpo9jKZZ3O7ckfc0gYrcVcna9Qa0TYlmKN1br2JZFksC5jSZLE3m2mwGdML6RBD1zcYe1ukejE5HQTYbCRBPF8MpyjVYQs9MKCKOERiciSjStIGZxLMdytc3ieJa3N1rUOhFbzYAo1pSzLs9eqrLZ8Nmo+6Qdi3YQM13MsJxp30j6/Chhq+HT9ELW6z4nUg6rNY9OGFPrRGw3A7aaPrvtgGorpOoFOMpireaTS9sEccJ6zcOPNS0/4rXVBrvtgLYfs9PS5FMO82M5Nhs+hyZuTVG2mj6dIObtrRZhlFD3IhbGcyxXO5SzLtutgNVah8l8mnMbTR5aKONFCbutgM1mgGMpKlmfIEqIE02tHbLid8inHV5drnN4ssBuKyDRCVGsieKIaidgupjpz4nUB31NX9+tfFMplVFK/R9KqT8HjvV6vdb6K1rrM1rrM1NTUwA8Npe7cbyc+hCDF2KfHnvssUGH8K5++XNLN752b/9tA/NTn1gkn7KxleLzp2cHHc7Quf9AiVzaZjyf4shkYc/x9E3P1v7jR+T3K/rnH/zI3KBDEOKuSTs2s+UMtq04Nl3g2HSefMrm4cUxZisZFsdyzJQzLIxlb3ldIeUwXkjxwFyJ8XyK2XKaUwdKLI7nsG3FidkimZTFVDFN1rVvvO6JIxPMj2UZy7lk3e7x2WKahbEsjyxUODlbZLqYopJ3WZrMcaCU4dRckalimsWxHFnX5sRskbG8y4mZIgcncuRSNo8vjXGgnOFAJcOBcob750pMllIsjuVu+rtaTJfSlK6tiKUci7lK9+82nneZLqa5f67IfCXL0mSOo5N5xgsuD8wVmS6mWahk+eSJKcpZh/mxLKfny5yeK3c/p6byLE3kKWcdporpPb/nyUKaXNrm+HSBiWKao1N5Jovd+OYqWaau/Q7GCy73zRRxbIucazNRSDFbSjNdSjNTyrA0mcexVffvP1vEthWnFyo4tmKi0P28TDkWpazLWG60Egulte7fH6ZUBsjSLd/8rNY6uunYfwE8p7X+M6XUX7zz+DudOXNGP/vssx92yELs25kzZ5BzU5hKzk9hqneem4PuvjjoP/+DGnT8o/bny7VTmEop9ZzW+sx7fl8/k74bf2iPpE4p9QfAW8DDwATw6LslfZOTk3ppaelDjlSI/bt48SJybgpTyfkpTCXnpjCZnJ/CVM8995zWWr9n9aZJe/qOAl8GTgOngD9RSv2XWuunr3/DO/f0XX/i0vBCkgTKOROL1MS95uangWGcUOuEVLIujj06m4HF8Lr5/NxtBaQci3zapI8Cca8appWUph8RxQmVESv/Erc3TOenuLcope6oiYRJn/Q14M+11n+olPp14D/XWi/f/A1a668AX4FueSdAtR3w3KVdtIYH58vMlkdnw6UYfs9e3KXlR4zlXT5yaHzQ4Qhxw5WdNmfXGlgWfHRpfE93TyFEb3Uv5JkLO2gN980WWRzPvfeLhBBiwExaevg68JBSygaWgM07eVE7iLleodoOTOxBKO5VWms6YfecbAfxgKMR4lbXz8kkAS9MBhyNEMPDC79z39EJ5douhBgOfV3pU0q5wB/S3bf3x0qp/wr4Sa313wN+GfjXQAn437TWwZ38zNlShnbQbUl7UJ62CYMopTg9X2G97t3SplkIExyezBMnmsy17m9CiDszVUhzeCpPECUsTeQHHY4QQtyRviZ9WusQ+Ow7/vPT146tAt+3359pWYpSxiVKNLbVe76fEIOSS9mUMi7ZlP3e3yxEHzmWopR1SDtybgqxH0p17zuCOMG15b5DCDEcTNrT975sNDxeuloDIE601NYLozx3aZcgSliudvj40YlBhyPEDRe2W1zYbAFwZmlMGlIIcYd2WgEvXqkCEEQJhydltU/cWwY9jkO8Pybt6Xt/bpo4MYDpE0K8q+un5CBGowjxbm4+J+X0FOLO3fzeSeTNI4QYEkO/0jddynD/nCZONAtjsm9KmOWxgxU2G750lRXGOTJZIGXbpF2Lsbys8glxpyYKaR6cLxNEidx3CCGGxtAnfQBz0iRDGKqYcaUVvjCSZSkOTkg5vBDvhzzIE0IMm5FI+oQYlLfWG1zd7bA4nuXYdHHQ4eyL1pqXrtbYaQfcN1OUhyf3mGo74MWrNTKOxaMHx0g5w1/tL4QQH9RqrcMbaw3GcikeXiijlDTrEaNBPuWF+ADObzXZavqcv9YQY5h0wpiru222Gj5XdtqDDkf02UrVY6vhsVb3qLbvaEKOEEKMvMvb3c/Fq7ttmbErRsrQr/TFiebsWoNEa07MFOVpteirajtkebeDuk2Z3FrNY7XWYWEsZ9wsNMdSrNY96u2QiYLs6brXNP2QZy/ukklZPCmdZYUYGWGccHatgVJw30wRx5b7ov1oBRFXdtqUci6OjAITI2Tok761usdKtQNANmVzdKow4IjEvcS1LXIpB8fa+6Gqtea11RpJAg0vYqo4NYAIby/RcHgijx6Hcta8pE9rzdn1Bu0g5uRskVxq6C9XRlmv+4SxRgcJm02fyaLsURJiFFzd7bBW8wAoZVwZZbVPlVyKhxYqKHVLg3ghht7Q30UVUg5eGBHFUMwM/V9HDBnHUmRSFm6Pp4FKKTKOzWrN4+C4efvlMq7N6fkyu+2QgwbeFOy0Aq7udB/onN9s8eB8ecARjZZ8ykajsZRF1pVrpxCjophxaAURCiik5b29X6dmS1zeaTOWc8m49qDDEeKuGfqrQaK7Ny2O0x3bIEQ/VbIuGw2fcq53h85YaxxLGfu0cDyfIpuyyabM+2DLpx2afkQriDg+LSv4d1v3ZlBjWZpsSsq/hBgVcaKxLYWi+xkk9iebsrlvdrgaswlxJ4Y+6fOi+MY+vo5suBV99uJyjcvbbYIo5ruO31q+qbUmijX5tIMfJQOK8PbiRPPHr66z3fR59GCF0wuVQYd0Cz9MyDgWruXiGfj7G3ZvbzZZr/u4tsVG3WemZN5qtBCmurLTJogTliby2Ibt+/LCmIxj3/haCCFgBJK+2VKGdhATJ9rIEjUx2s5tNKl3QuJkb1KilOKhhTJrdY95A8ch1DoBL17dxQsTUBiX9CkLHNvCsUH6ENx9rSAiiBJ0ovEjuTEU4k5tNX2eubBDlGiSRHN8xqxVoYWxHEGUoJRirmzeZ48QYjCGPulTSknzFjEws6U0fhgzU+rdBGOikGaiYFbXzutSto0fJbT87t4P05QyLo8dGqMTxhy4ze9XvH+L492Osq5tMSVNXIS4Y00v5PxWd0zPXCVjXNJnW8q4mIQQgzf0SR90yxe0xsh9SWK0ffTwBEemikwVe3e/TBJNK4jIpxwsw0qAHFvx+OEJWl7EUUP3zI3nzesqOiqOTBb4xNFJMo5FMdN7T6oQYq9ixmVpIocfJ8zKAykhxJAY+qSv7oX8+RvrJAl88viUcbPQxGh74vA4Gw3/tit93zi/xdWdDkenC5xZGu9zdO8u49p87PA4tU7I/JiUAN1r0o5FwwtJ0g4ZV+pnhbhTGdemE8a0/IisdHcUQgyJoU/6Lm+3eXW5TqI1M6WMJH2ir4oZ97arJFprvnVhh2onZLcdGpf0gdnlp+LD9eZ6k426j2MHrNY6HJ2ScjAh7sRytcNqzUNrOLvRZN7AfgINL0QpJSMbhBA3DP3VwA8jzq43SBLN44fNu6kW97arux1Wqh0SGSciDFNtB5xdr5NybKJIzk8h7lTGsai1Q4I4IWWbVbYPsNHweOlKDaXg0YNjUiYvhABGIOkDxdJ4nkRrHGnxJwyitWaikCJlW4zl5ENXmCXtWixNFHBshTyTEOLOpRyb0wtlwiQxMqFq+91uvFpDy4+MjFFrjVLmJcxCjLKhz5KOTOWxre4A0vukW5UwiGVZHJ7I40UxR6fzgw5HiFucnC0S6YS0Y5mjaO0AACAASURBVHFwQvZ0CnGnpoppTh0ocXK2xKEJ867tC2NZcimbYsZhzsBxQZsNn6+d3eDr57YIZAarEH0z9Enf8m6HfNplIp/m0nZr0OEIcYPWms1mwHwlx1rNH3Q4Qtzi4naHqUKGlGOzKuenEHfMthQPL1b46NI4eQP3zG02fdpBTMOL2G6Z995er3skCbSDmFonHHQ4Qtwzhj7pK2QcOmFM0w8pSdtxYZiMa1FtB+RknIgwTDnj0PBCgiimkJbzU4hREd60RzeMzavdni6m2Wz4+FHMWE7u24ToF/MeUe2TYylKaYcwSXBlT58wTD7lUEg7kvQJ46QcRT7tkHVtbMNmSAoh3r+FsSyx1lgK5srmzRFcrXl0wohYJ9Q9M/ccCjGKhj5LqnsRYaIBJWUCou/afsTZtQadIOp5vNoJcGyLqqHn5m474M31BrF08rjn7LRCau2QnZZP81rjByHE8LMshW2BY1lGNkvZaPjstEI26j5Nz8zPRiFG0dCv9M1VsixNZIlijNxQLUbbbzx7he1mwFQxzc98YumWY0opHjhQ5vJOm+MGNnJp+xG/9s3LdMKYk7NF/vrDc4MOSfRRy49YrrZJOTZJIs0UhFm8MMYLYyrS+XjfXl2p8UevrAHww4/McWzarCZ3J2YKNDoh6ZQlc2KF6KOhT/oAMimHONEY+EBLjLidps9OK8C6zZq54yiKGQfHMa+8M4gSqp2Alh+z2w4GHY7os1onJIwTUNDweq9UCzEIfhTzzfPbRLFmaTJnXNJiumo7ROvvfG2axbEcO82ASt4xshGOEKOqr+WdSqk5pdS3lVKeUmrPO111vaiU+tk7/ZntICbj2ORcm6YvNy6ivxJgsxFw4xP2JlprgiihkHboBOaVz6Vci1YQstnwke2w954EaAcJnSDGMXDAtLh3BVFCFGu01lJ6/D6cOTTG6YUyDy+WeXihPOhw9vjm+W3+7I0Nfvv5VTYa3qDDEeKe0e9HLDvAZ4DfvM3xHwI29vMDiymHl5arhFHCaQMvbmK0ZRyb+2aLpN29K3lKKZpexPOXq3zi6MQAont3fhQzWcgwnsswAtt7xT51/49rwCIxsMOfuHflUg7tMGKzHnBkqjDocPbQWvPWRpMgSjg+UyBtWCVH2rX5/gdmBx3GbV3f4x4lmmYnQhZyheiPvt7paa09rfXuu3zLTwC/cbuDSqkvKqWeVUo9u7m5CcCbmw2SBGzL4vXVxl2OWIh3990npxjPp3jqxOSeY0mS8PpanURrXl2pDyC6dzeWS/Op41McnynwPSenBx2O6LOMa1HKulSyLrYjSb8wR9OP0Lo7ksnE0vPNhs/l7TZrNY9L2+1BhzN0njw2yanZIk8cGWdp0rz97kKMKmOKqZVS3w/8eyDiNnFprb8CfAXgzJkzGrq14Y6tiBPNoYlcv8IVAoCdVkAl67LbY9+EZVmEYcJ6zaOSNetJ8HUPzpc5PJmXltn3oFIuRcpWuJaiKPtqhEFcS7HZ8Gj5MfOV7KDD2SObskm0JtZa9qS9D+Wsy2NLY+RcG0vGxQjRNyZdrX4W+Cngx/fzojjReGFMFGsSaTsv+uxPXl3n3HqDk7MlPnl86pZjWmuCOMGPE/zIvHMzjBN+5ZsXWav7fOr4JJ86Yd5q34WtFp0g5shUnkyPElrx/p1br/Pycp20o9htBRyU7sfCFAom8mmybkzewBmnloKruy1afsxDsq1k3/7D2Q1++4UVsimLX/jsCSaL5s0SFGIUmVTTcxz4LeA/A35BKXXyTl705kaDN9cbvL3Z5KXl2ocaoBDv9NZ6g6Yf8eb63tJirTVbTZ+mH7LR9AcQ3bvbavq8cKXGym6Hr5/bHnQ4e+y0At7eaLJS7XB+szXocEbOX57botEJ2WmF/NXbm4MOR4hbJECCBgMXgl5fbfD85RpvrDX5y7fkvbNfL12tsdn0Wa56vL3RHHQ4Qtwz+t2901VKfRV4GPhjpdQTSqkvA2itH9Fa/wDwT4F/rrV+405+ZsaxQEOiNRnXpBxW3AvyaYemH922xCfjOlgosgauUhXTDmEUs1rzKGbMiy/jWjdGYeQMfNo/7CZyaeJr187FcSmNF+ZQKPIpm1LaxTWwtXAp45J1bdK2YszAOYJJormw1eLiVgvdo7P0oE0UUtTaIZ0wZtbA8l0hRlVfyzu11iHw2Xf856ff8T3/aj8/c6qQpphxCBPNbFGGfIr+KqRtxvMpCj2SJsuyiOKYph9hYuVxGCcsjuep5FIUM+6gw9kjl3L42JEJvDCRPYcfgrGCS8a1cCxF1jWp0l/c62xL0QkStpse982a171zvpLl+EyBdhBz6oB55Z1Xdzt88/wWCoXrWMbti6zkUjx+ZBxbKZJk0NEIce8Y+k/6tYZPJ4hJrn0tRD+t1322mwHpHt0PkyTh7HqDWifitRXzSo8zrk2UaLwwIWVYy/HrcikHAx+kj4TlnQ5eGGMpxaZcO4VBGl7Ipe0WUaJ5c73FScMSq4YfcXiym4y2AvPmA5/favJHL6+BgsOTeeOSvqXJHM9f2aWQcZguycN6Ifpl6JO+lK0oZl20hpSBZSBitJWzLonWVLJ7MxOtNZZlkbItLGXexhRNd4hvy484JG2z7zlZ1yaXcrAtjCwBE6MvTjR2j+6NKcdiupSmHcRMFc176jNZSDFRSBFECQtj5pVG77YCXFuBUuy0zBt5ESfw+FJ3dm07iKUDqhB9MvTvtIcXx1ive/iR5slje2elCfFhSrTmyk67Z/mhbdt84ZE5XrxS5cmj5p2bGcfmmYvbnNto8h89fnDQ4ewRJ5qXrlbphDEPHChTzplXgjrM/saZBS7utCmkHb7vlLmDnMXoieOE//HPznFxu8nf+ugiTx67tfNxMePyyeNT1DohR6bMeyDl2BaPHhwbdBi3tTieYb3hYwOHJsxa5QOYq2R4a6NJOesyIaX7QvTN0C+NtbyIc5st3t5osmvgEy0x2l68UqXmhTx/ebfn8alCmrF8ivG8eSUs5zdq/PEr67yyUuf//PqFQYezx247YLsZ0PZjruzKAOS7bWW3TbUdstMK2GxJeafon7Nrdf7k9TVeW23wq9+8tOd4kmgubrd4c71BrbN3BqoJWn5E1cDB8QBfP7fDWr3DSt3jG2+b15l5o+FTTDskiTb2/68Qo2joV/q+9uY6v/XtZWKtKaRs/s73HB90SOIe4kUJUazp9JjDlyQJ/+rrF9lpBby10eQHHzowgAhvr+bFNPyQMNFsNsz74C1lXLIpGz+KmZYmTXfdbz2/ykbDRyn46mvrnJoza9+UGF35jIMXxLSDCMva26hlo+nz1dfW8cIEP0r4CcMqEWqdgF9/+gqdMOaHH5njyJRZzWa2mh5hpAHNtoEPdNp+zCvLNdKuxWOHKoMOR4h7xtAnfRc2mmw0OmgNZ3vMShPiw7RYybBS7bA4vne4rNaa5WqHlh8Rx+a1KDtQyjBZzND0Qk7MmFdClXIsPnKoQtuPGS9I0ne3RXFEGHcfVihkT5/on4xjc3K2yHbL7939UmuafoQfJXQMbJTywpUqX31tjVhrsimLn3vq2KBDusUnjk7xrQu7KKX42GHzthZYCrROSNkOBn40CjGyhj7py7o2QQQabeQsNDHaMikb21Zkepx7lmXhBxFBrPEi8z7ZxotpfuSROZarbT5zv3l7urabPv/kj96gFcb8yKPzfPrkzKBDGimlTHcvjaVgTPbViD5yLcVG06fWDqn2WIkay6f4xNEJdloBHzsyMYAI3127E/LmRoM40Tw4Vxp0OHs8uFDmpz5+EIXixKx58X3z7S1+58VVsimb7zo+wZRUcgjRF0O/p+/KbqfbeU7Dck32/Yj+Wq95hLFmtdrZcyyKugmf1uCF8QCie3cWis1mwHo9oOWZV9759maThh+TJPDaSn3Q4Yyci9stNBBreH3VvJEiYnTtdkLGc2kWx3No9nbvVCgKaYdS1jWyK/dbW02iRJMkmss75t13+GHMMxerPHepShib99nz5kYL21KEccK5jeagwxHinmHe1XSfEt29aYk1RLGUKIn+ihJNEOmew9ctyyLpPo8gMbB87mqtzTfPb/P2VovffWlt0OHs8fBChcOTOSpZh8+cklW+u61+U6K/3TRv348YXYcn85yYLZJL2Tx1Ym/5YcML+Is3N/nLt7Z49lLvJlmDNJlPoVBopShlzesq/KevrfHy1SovXNnla29sDDqcPT51fBLHVozlUrKnT4g+GvryzoxrcX3MT9YZ+r+OGDK5lE0nTHqWd2qtSTmKJNSkbfNKj13LIk4SgjDBVuYlpRp49OAYnTCmaOCN1bBL299ZYSmk5Nop+seLEk7Plzg5WyCf2fvebgcx9XZIK4jYMbBD5tJkgaXxLGGiOT1vXtISxgk77RBFtxOqabr7tcdxLQvfvCITIUbW0H/SZxzF9bnCKdu8i5sYbSnXJuX0TvqUUmg0CfQoYBq8QtplrpxltxNyaMKs7nPQXX166WqNMI7JujbzFfPmTQ2zTMqFVrf0q5Qd+o8CMUS07o672W0HfPL4FLxj5l0h7TBTTlPr2MyVzXvfL00WeOrkNJ0g4aOHxwcdzh5tPyGIYiylaBqYVe12Al5ZrpF1bWkiJUQfDf0n/WbzO08Bdz3zatfFaJvMp4kTmOjRXTKOY6Kom/AFiXmNXGwLHj00TjuIOHmgOOhw9lKw0wrohBGxgU+rh13KsVB0z09t4lMJMbLqXsjLV6vUOhHlrMvnHpq75Xgx4/LZU7O0g5j7Zs27Ns2WMnzf/bP4UcJJAxulbDV9Eg2J1mw3zVsp3W0FpB0L11as1XwOTZr30FGIUTT0Sd9MOYtlARqZ5SX67sGFMtZKnQd7zDhzHIe0a5GEiZGdZUvZFJ9/eI6VaodHF80rUbJUt8tfoCxsS7KSu+1TJ6ZYq17GtS2++6RZMyTFaGt2QlZrHl6UcKlHIxTHtvjYkQnCJCHtmHft9KOEmhcRxQkNPySbMivG++dKPH1hB6XoPRJjwCbyabwwRinFTFnu2+5FS1/6/Q/0+ou/9Lm7FMm9ZeiTvslCGttS6ATGpe246LPFSg40LE7keh5PuxZelJAxdL/pfbNFI5+kA1jKYraSJYgS8mkzf3/DbHEsRynnknUdKrJnUvSR6wIooliTvs0DHctSpC2zkqnrNhs+z5zfxo8TSlmH6eLeOa2D9L0PzPDqSh3LUjx1cmrQ4ezRCWIsZYHSdAzsbN0JIl5ZrnOgkmFhrPdnuxDDaF93Ukqpj2mtv/lhBfN+XNhqYAHawsjWyWK0RTphuxmwML5330kcx7SD7gda3TevxAa6ZTbrDY/j00XjVtPG8ylOzhZp+CHHpqX85277xrktau2QphXx0pUqDy2OvfeLhLgLUpbD8ZkCTT9iaar3QyetNXGicQwc2dD2Iy7utPHDmM26eZ1vwxg+fmQcLPBD80rjW35IylHYWDS8aNDh7PEHL69xYauFYyt+9rsOU+jRbEiIYbTfx+f/M/AYgFLqG1rrj9/9kPZnaSKPptvpTxo9iH77w5dWWat7rNY8fvrjh285Zts2tlIEiSZt4I1Lywv5pT98ne1WwCePTfEzTy4NOqRbRLEm1t3Op53AvKfBw+7qbpt22L16Vjvm3biK0TVbzvKDpw+wvNvmM6dm9xyP4oRvXdih5oWcni8bt9rSCiO2Gh5R0t13bJqV3Ta/9q0rKAVL4wUO3qYSZVAeWKjwykqDfNrmyFR+0OHsEV/rDqh173FMQgyr/SZ9Ny8FGFHPMF3MMF/JEms4OG7WhU2Mvrc2G7T8mJa/92ml1ppixiFMQso5854UbjUDzm+10Bqev7LLz7A06JBu0Q4iVqsdgihhspBiUd7f+9IJYl5fq5OyLU4dKO1ZyW2H35keuWVgswcxujRQybnESZa0s7fCoN4J+dNX19jthPhhbFzSlySa3U5IECUEBg4/f+FKlea1z6SXrlb5yJJZHUbnKll+9MwiAI5l3gPRH3hglm9f3mVhLGvkHEYh3q/9Jn2WUmqM7lD361/fuGJrrXfuZnB3YrKQZracIYo1M2Uj8lBxD2l6MWECjdskfZ2w27WzbmAJy3Qxja1gudbhY0fMLO1bq3m0g5hTB8zrkGe6yzttdq4lc9evkze7+V4rY+BKtBhdtU7Iv3tumd1WwFbT54ufurV8u9oO+PaVXbwwoZh2+MKjCwOKtLeNuocXxkSxZqXqDTqcPQ6U0nhhhFKKeQNHXkwX07xweZexfIqSgaWTpazLd983PegwhLjr9pv0lYHn+E6i9+2bjmngyN0Iaj/G82kcy0IpzWSPtvlCfJiur5ToHiUgSilSjoUfJWQN7EC30fRo+RGubfXsoDdonSAGBRnXNjJpNt1YzuXqbrchRq85fMWMi0UHBRRz0gRL9E+1FfDmeh0vSHj5anXPcY3GUgoF2LZZe40B0o6N0gpLQcYx74FJJmVz5NoYBBN/f89d3OHl5ToZx+b+A2Wp4hCiT/aV9Gmtlz6kON63hh9xeDJPosGLpPha9FfasYiD2w9nf3SxwqWdNicN7JBpobmy28EPEyoGDuceL6S4b7ZEEMYcl0Yu+zZdyvBk1sW2FG6PlbxTswXOrtVxLEt+v6KvbEsRJ929U7bam5SUMykcW+FHMTOGdcYEWJrM87Ej4/hRwmOHzKuSOFDJYVkWloIDY+at9G00A2qdkIYKjRweL8So2m/3zkNAVWtdu/bvnwa+AFwE/ietdd83hhTSNm9uNEgSzfc/sHdDuBAfJtcCR4Gj9j5wsCyLXNpBoSgaWMJS7UToJEEpTds3b19KLuXw0HyZeieU/brvU6+HEdetN3ySBCI0W03zStTE6Mqnbe6fLbDZDDg9v3eO3EqtQ70TYVsWr6/VBxDhuzs0meeBhTI7rYDHDpm1Xw5gpxkQhBEoxa6B+3UfWqhQa4dkXVsa8AnRR/utS/i3QB5AKfUI8H8Dl4FH6Hb27LtLWy1Wqx4r1Q5vbzYGEYK4lykLy1Yoe+/NdRzHvLxcY63W4fkre0uYBq2cc8lmXFKOw7iBpdG1TsjZtQarNY+3N5uDDmfkbDdDwgTCWLNmYNt5MbpStkWYQJRoVI9RMRN5F9C0g4hKzrwqhDfX6zx9foc315r8xdmNQYezx2bTJ9Ld3+9m07z39qnZIsdnCjx6sEIpK6XlQvTLfq+mWa31yrWvfxL4l1rrf6qUsoAX7m5od+aZSztcrbbRGv7y7S1++hOH3/tFQtwls+UMV7bbzN2midCV7RZhDP6GeQ8kJvIZHl0oc2mnw/cYOMAXuu3Qgyhh3sASpWFXSlsoQCmYKMiNl+ifrZbPq8tVWkHC029v8be/69Z2AJ1Q49oWKcciSQYU5Luod6Ib+7ibBu43PjmT59eCCIXi5Ix5Wwt+78UVfv1bl8llHP67H37QuO6swnxLX/r9D/T6i7/0ubsUyXDZ70rfzY/kvgf4MwCtdfKOY31Ta4fECSQaGm3zLr5itG3UfcJYs9qjg1scx8QaEiA28Mal1vZ5daXOWt3jG+f73nj3PWmtsa3u/h/dq1OO+EC22+GNc7PakX01on+2mh7NICaMk56rzGEcs9sOqXsRO23zzs0nDo/z6ZOTPHawzBcenR90OHs8d6WKhYVC8XyPRjmD9tsvLPPaaoPnL+3y9PmtQYcjxD1jvyt9f66U+rfAKjAG/DmAUuoA8J6bQpRSc8DvAfcDBa11dNOxfwT8wLV//Yda6z+7k4AqWRutu10Ui2nzOiSK0VbvhEQa6t7eGxPbtm88CTFwFBHrNZ/1ukecwBur5u2bsS1FxrWxLE3KwO6nw26z3r1ka+D8hpTPiv6ZLWWxlCJKEsZ7rDKHicZC4yhIDFzqq7YjXlmp44cxl7bbPNBjX+IgTeTSXO8tPZE3r3Q/iGOiJCGhd+frQdtt+Xzj/A4Hx7M8OF8ZdDi39UFWu+7Vla573X6Tvl8Afgw4AHyX1vr6ne5x4E52M+8AnwF+s8ex/0tr/Y+VUhXgd7i2ivhewkTdWK7U5nUmFiNOveOfN9O6e9MS0232Yhp1rflMAgNap393caI5u9ag5UccGpfyzrvt5q1UmR77qoT4sLTCiHzaxrbo2Vm2kHZQykKjSRs4EuHZi9u8cGmXRMOfvrFuXNJ38kCJQxM5lFJGduZ97OAYy7sd0q7D4cn8oMPZ49e+dZnXVhpkXItf/Nwpxg1MnIV4P/Y7skED/wa6jVyUUj8P/C3gAvDP7+D1HuCpHi2atdYXrn3p853xZ7dQSn0R+CLAwYMHAZgsuFh29xWlrHkdEsVosy0IY+h1X2JZFo6jCGJNysDh16VsimLGpR1EzJXMS6q2mgHbTZ9OGHN5u21kl7xh1r2Z7nZtzbqS9In+KaXTlLMOaMVUsfd+0gOVDE0/Yrpk3siGlGOx1fAJE00cmdf5eLXWoXWtI/NK1ePwlFmJ36fvm+Kl5TqT+RQnZkuDDmePIOquLseJJooNXIoU4n3a78iGE8CPAz8BbAO/ASit9afvYkz/DfC/9jqgtf4K8BWAM2fOaICWF8G18s4gNK8MRIy266dcr4kHURQRxd1z08RTM+VYBGFMGGsiA0uo4iTm6Qs7eGHC0oR5T4OHXeemk7Lhm/f/X4yulKPYbATUOyH1Hnv2SlmXSjaF1jBfMa/JR8MLqfsRcaLZNXDP4WbjOx2Pqx3zunf+wSvrvLXR4JJt8fpKjcePTA46pFv86EcW+fM3NliazBv50EGI92u/5Z1vAP8f8Hmt9TkApdTfv1vBKKX+BjChtf61O31N1Ytu3FDLrCnRb9cfAvZ6GGhZFkGkSYB2YN7T4ItbTTpRQqLh8m5n0OHscXatwW47IE40r67UBh3OyLl5NuOWgbO8xOh6/uI2W82ARGueubi3iZRCcfJACT+Kjews+9pq48ZK2uur5l2bLu90qHUCUIorO+1Bh7PHs5e22WoEKAWvXK0bl/QtjOf46U8sDToMIe66/SZ9f5PuSt/XlFJ/RLfU867UBSmlHgL+LrCv3aWNTngjAC+Sp9XCHFprlAK0mY1c5say2JZFkiSM5827sXItizjRxIlGJ1Ji8350ghjbUqR61B/bjrrxtMI1cN+UGF3jhRRaa5IE3B4zTosZl/vnStTaAffPmbVfDiDr2je6Cmdc8+YINjoBTS9GKWj45nU1zzkOluruKy5kpEmXEP2yr096rfVvaq1/DDgJ/AXw94EZpdT/opT6vvd6vVLKVUp9FXgY+GOl1BNKqS9fO/xPgJlr//237zSm2VIaTbeErmzgEFcx2jK2QgHZHp1abNvmeq6iDHweobXiQDnDZD7NgoFz8BbGcxydKrA0mef0orkd1Ey1Xvf4q3Nb/NXbW7R63PgV3O/cbM1VpFGB6J+UY1NI22RcxXSPGadKdQe4Z1M2Vo8eAIP20HyRYtom7Vp85NDYoMPZ48J2izDRBLHmgoGdeT92bIJyzmWmlOHBBbm2C9Ev7ytL0lq3gF8FflUpNQ78KPAl4E/e43Uh8Nl3/Oenrx37/vcTyzcv7d74+o0V8y5uYrTNltNsNH0OFPfeuPi+z/VczzdwoWq6lGG+kmG7FXLKwM30pxcq/Pxnj7PZ8PnBBw8MOpyhU7221yiONQ0vIp++9XLfvmlP30rVvH0/YnTl0ja2ZWEryLp7nz23g4i3N5t0gphCxjWuw+NaIyABbGWxUjWvfFLRTZwBI5PmrOMwVciQdS0jRzYIMao+8NKY1nqHbuOVns1XPmwF9zsdOzMm9sUXI21+LEeYwPz43mYD9k1lS0aemQlUcim8KKGSM7Pz7adOTA86hKF1aCJHO4hwbYvp4t6VvFzKpnatgct0j4cWQnxYtFaUsi4dK6aU6VVarkjZFpGT4Bg4TsQPNXECidZ4oXlZyydPTPPKcgOl4BPHzNovB7DR9Gh6IV5o0fDNa4RzL/ggM/7E8Br6esi/+ZF5XlmpkiSaLzy2MOhwxD3GDxPStoXfoz2n4zjMlVNsNgIOGVg+uev5XN5p40cJryybN5xdfDAZ1+bRg7cvPfvokXH++JV1bEvx+JGJPkYm7nXFjMtkIU3dDpmr7H3gUEg7nJgt0vIjjhg2bgDg+Gyeg+NZgijhMQPLOz95fIrXVupYSvGxY+a9t7Mph7RrkXZsUrZ5Sb0Qo2rok75DEwUOTxWIY82xqeKgwxH3mErOoe5FPVfKLMviwfkKl7ZanJozr3wyn3LIpmy8KDGyQ574cC1NFChldkg7FrNl89rii9GVdW2OThWoeyFLE3uTOttSPHF4nER3vzbN5LXrpU5gPG9elUQu5fDXTs8BkDWw0cxCJcviWJ60a1HOyn5iIfrFvKvBPm02PJpeTKI1Gw0Z2SD6SymLVhD1LN9MkoSthk8riNmsm7dnKuXYRHFCO4iQyuh7jx8m5NMOtm3RjqTESvSPYyveXKuzUvM4Mdt7Je/CVou6F3F0Kk8xY1Zi9fzlXS5stYi15t+/scEXHl0cdEi3uN6Yy7IUB8rmVZl84tgkUaLJpx3mDayCEWJUDX3SV2uH3dadQLVjXmtiMdpeulql7sW8eLW651iSJPhRggI6oXlz+q5utzm/1SKINN84vz3ocHqKk+7g+LQjbb3vtkNTOaZLadKuzVROnraL/vnW+R1eW6sTJZr/59llfv4z991yvOGFfO3sBvVORKMzxidPTA0o0t5evlLFvzbj9I118xrIKaVY7LHP3BQLYzl+5LEFHEvh2DIuRoh+Gfqk7/hsgXIuRaxjTsxKeafor6Yf4UcJjR7tOR3HYWEsx1XaHDJwX0qQxESx7jYjMHDGZcML+ddfv0jDC/nCo/OcOmDevK5h9uBchddXGuRTNosTZnVHFKMtTiKCSJNoaPdo5FFrB/zZa+s0/QittXFJ39HZEo61SqI1B8dlper9yLjyIE+Ifhv6pK+SbcbeQgAAIABJREFUS/PoYoUwSTjQY96PEB+mlGMRxpp0jwHDWmsenC8zlnc5Nm1e0rcwlme2nKHeCTm9YF5CdX6zxRurDTTwl29tS9J3lzW8iFLGxbEVDS+ikpN9naI/xgtZ0o5FGCdM9egs2+iEbLcDgkhzdbczgAjf3ROHJnh4oYgXJTf2zgkhhOmGPulLtGat7hEmCVFs3mqFGG3Hpwus1DwWbrNvYrcVcHm7zXTBvPI5peBTJyZpejEPzJuXUM2U0owXUnSCiCNTshJ1t/lhxOurdfIpB41cO0X/jOdSHJ7IU/dDTi/s7X5ZyqVYHMtSb3f39Jkmm7ZZmioRRBFjeXlYsl9BFPPcpSqVnMupA+Y1ORNiVA190ndhs8XVapsk0ZxdrfPEEfNm0ojR9ZFD43Bpl8cPj+85prXmWxd3qLYDgijhPx1AfO9mPJ/mMydnuLTd5qn7zCqfApgspHniyAT1dshpA5PSYffqSp21uodjK5Z3OhwcN281WoymubEsJ+eKXNnp8MSRvUnfVDHDI4tjbNQ9ziztvbYOWtq2OTFTIEo05ax5SV87iHjxSg2l4JHFinGllH/w8ipfe2MT11H83U8f4/CkXHuE6Ieh30Eba02UdPclxdq8IalitC3vdogTzeXd9p5jWmvCOCEBgsS8lZQk0axUPVZqHbabwaDD2aPaCUnbFlPFNBsN87qfDrso0cSJJo41cuUU/bTV8NltRcSJ5uJWa8/xlh/iXWt+td00771fzrk4loVOYMLAlb6Vaoc31xu8td5grWZeV/PtZkiUaLwwoSEN+ITom6Ff6TsxU+T4dIEo1jy4UBl0OOIec3mnzVYzIOnxwMGyLJ44Ms7rKw3OLJl3bq7XO/y7b18ljDVbzYD/wbD3TynjkkvbeGHMTEn2695tZw6Ns7zbIZuyOThuXgmdGF1BFHNhq0k7jHm7R9LnRTFn1xu0fTPf+w0vIuvaOJai5oUsDDqgd/CjhN1WgFIQxOZ1jv5rp2cI4pjxXIqTUt4pRN8MfdKXciyOTxeJkoRcauj/OmLIHKhkui3vezQjUEpxfLpIOesaeVNtWYq0a6F1QsY1b9E/5Vh84ugkWmuUkkGCd9uD82WiJCHjOkwbeGMtRlesFbm0g+tYpK1eTbBgIp+mmE7Ipc0qTQTQaNYbHlGsCQzsfDxVSPPAXDeZmsibt5/8QCXHzz11VK7rQvTZ0GdJaccm0d3Wz2mZ9yL67OeeOsqzl6o8vrR3XwpAyraIYk3aMe/cnCll+dufOMy5zRbfe//0oMO5Lbkx+HCM5VN8+uTMoMMQ96D5sSwPzpW5utvm0yf37sOfq+R46r4prmy3+N4HZgcQ4btL2RaFlEOYJGQN2y8HMF3K8PjhCVBQzpo12P46ua4L0X9Dn/Qt73b4q3NbRInmwQMljs3IrD7RPw8vjvHwYu+ET2vNX729yfnNFtV2wA89Mt/n6N7bp+6b5lP3vff3idGTJJpXVmoUMg5HpJGC6KO6F1L3ArTWrFT37tnrBDFBFFPIuGw3fBYqZg0a74Qxy7U2XpDQWNw7Z3DQtNY0gwjL4KRPwNKXfn/QIYh7zNAnfd+6sMW5jSYA/+HcFt9/+sCAIxL3kj94eYW/emuLp05M8X0P7j33vvH2Du0gYrdl3o0BwNMXtnlzvcH3nZph5jZjJ8Ro+stzW3zrwg5KwY99dJGFMbNurMXoqncCvn1ph3YQ49iKv/PpY3uO/+4LqzT9kGo7vO2DtUFZq3u8dLlKkGhOzhb56OGJQYd0i+VqhzdWGwAoFLOGzTDWWrPZ9Mm4NqWMJKVC9MvQJ325jINGoxMopMwrsxCj7Z/9yVl2WyHPXNzZk/QlSQK62yHRxP6Ia7U2/+i3X6HhRTx7YYd/8ROPDTok0Ud+lJAkutvswcB9SWJ0rdfabDVDEg1vrzf3HN9phZzbbNL2I2bL9QFE+O46fowXJ8SxpuVL98n9urDV4vxmC6XgiSMTFNJDfysqxFAY+neajcYPEzSgDWyLL0bbVjOg7ce37d6Z6G5rfAwcJ7LR9FipeoRxwmsrtUGHI/psKu/y2lqNctZl0sC282J0rdV84muXxKq3twqi6YfstnyCWLO80+lzdO8t41gEYUKQaBzHvL1pYzmXThhjW1DJmbeS1g4ilqsd0o5FGCVgXq8ZIUaSed0l9unytkfatcg4Fqt182aNidGWdm0sS/UcfhuGIZZldZ9iGrhpPe/YWHTz0bSBzQjEh+vpC7vkUy5RDC8tS9Iv+qeSdbEVKLhN52BNyrFJOxaObd61M0w0s+UsC5UsloHX9vW6T9a1Sdk2G3Xz5hxqbd7vTIh7wdAnfT94eoZixiWbdvjcQ9KJTvTXXCnDeM5lrsd+uFQqxYmZPGnH4uEF82YR5TIu08U0E/kUB8fN3c+lDVwlHQWPHaqQdhSVnMN9s9LIRfTP4aki+bRFyoZjU3vPvcXxPNOlNIW0w0OGzQ8FeGCuxKOHKjwwV+a7ju3tPjpok8U0jq1wHYuJgnmr+NmUhWsrXNvMpF6IUTX05Z1+pJkvZ0nQhFLdKfosk7KIEk0utff5idaaqWKGONGUc+bVr2Rdh0reJdKa+THzmrgEUcJfvLlBoxPyyeNTMkvuLvvo4QlOHSh1Z6U5stIr+seLYsJYEyf03BPX8iPaXkQYJWy3zavgKedS/NxTR4kTbeR84FLG5akTU4CZoxH8MObKbptyxkV25QjRP+ZdrfbparXNWt0Drbm03Rp0OOIec26jRcMLeXNjbzMCrTWXt1tstQIcA2dI1jsh9U5MouHKTnvQ4eyxXG3zJy+v0Q5jHMvihx81b+SFybTWrNU9XNtistD7oUPatY0sTxOj7eJ6Ey/stre63OPas1H3WWv4RHHC2VXzGrkAOJaFpcytQjAx2bvuuctVLm93UKrDaq1D2cB9h0KMoqFP+hzLwgu7N67KwA6JYrQ1vIAggrrX+2l0O4hp+xFNz7wOb1nXYqqUot6JmKuYt9K3VuvwzKUdwkQzUUxJ0rdPl7bbN8bZfOTQGGPvaNZybqPBH7y8StZ1+PHHFylK63TRJ50ovvFpHcR7l3o2mh38MCEB1uteX2O7E7V2yL955jJ+FPPXH5rjSI8SVXF7M8U0k4U0rq3IS+dOIfpm6N9tfhDh2haxhjAedDTiXpNNuyQ6um2JT6w1tmURG1jDUsmneXxpgpVqhycN3JcSJ5CyLRQaG3OfWpsqvmkvZNxjX+TLV2u8vdkiZSsub7d4YN68vVNiNE0U0tgKEg2lzN49Z2kLLAvQ4BpYJXFxu8m59QZBonl1pSZJ3z59+uQ0pWyKSs5l0eD95EKMmqFP+hYmcsyU0yQJHJ6UC6/or4VyhmXtsVDZ+8GllOL4dIErux1OzZh3bsaJppBxmBvLog1MqubHskwU0rTDmKPT5v3+THd4Io+tFCmnd3lnFGvWah1SjiUlnqKvjkwXmStnaAQxZw7tHbx+bLbM0kSeph/x5FHzHkhZClbr3XE3MuNy/1KOzYPzJSMTeiFGWV+TPqXUHPB7wP1AQWsdvePYrwAZ4L/WWn/1Tn7mbClLNuUQRQlzFWn0IPrr4GSOXNpltrT3plopxWQhw1YzYKJo3rmZaE0+5aATSDnmffimbZtHD1YIY21k+anpLEuxNJm//XG7e37aljJxoogYYYWMw9JEgY2mx8m54p7jx6ZL/Pxnj3Nlt80PPWReWbdSFuP5NHGijdyvDdDwQpRSRg4+f2u9wdfObpJzbX7ksXlyBsYoxCjq9zttB/gM8Js9jn0J+IfAS3QTwztK+t7caKIAx7Y4u9bgo4cn7lasQrynR+bHeW21xumF8p5jcRyz1vBIuzYrVfP2pWQcm0MTORpexMEx80psKnmX+UqOph9ySEqA7rr7Zgps1D1yrsP4bRq9CPFhaPsR7SjCthQbtd77oT//sHnJ3nVTxTSPHizjh0nPkRODttHweOlKDaXg0YNjjOfNGtvw8nKNC1tNXMviarXDiZm9ib8Q4u7ra9KntfYA7zZdpR4Cfl5rrZVSDaVUUWvduPkblFJfBL4IcPDgQQCmC2nafkycaKaLZl3YxOg7NlNgcSLbczi7ZVmkbYu1TocFA1ehLUvx+OFxokQbWWbTCWJmyxkgg9+j2YP4YI5NF0k0pB2bKUn6RB+pa4PZE63pdelJEs3zV3apdyLunysxY9i4lqlCmo8fnSSIEiNLz9t+t8GB1t3xF6Ylffm0TRRrbKXJpWRcjBD9YtKauq2/M4W5BowBtyR9WuuvAF8BOHPmjIZuCZ1tKRRmtygWo+mB+RJrNe+25YeOBbYyt3xOKYVr6HDciUKaw1N5OkHMUQOfpg+7jGsbOfhajL6Ma5N2LBoeVHJ7E5KGH3Fxq007iMilbeOSPstSnJwtDTqM25ospHj2UoClMHI4+6GJPIcnc+RSDuWsdA0Wol9MSvpu7r1Zgv+/vTuPkqys7z/+/lbvy0zPdM/GNhuBgTAM+xYBWT0Yo5ETNJIYURJNor+o8YQTkpxEfjm/JERjZImJ5hgEshETg4oRRQUijCIKskbkB8wMzALT2/TetX7zx701U3RXLzM1Xfep6s/rnD5ddatu8+GZW8+t595nYd98dtozNE42X6Dgzq4Au9BJfUtnCuzZNzltOnyAQqFA/2iWgkPfWHgLDAP8z54hdg5McOa6broD/HKgxp5I/RmayDI0kSOdy7NnaPo6fQ0GvaNpJjJ5jsloWu6DtXckzbK2qD7vG8mwtiekr3owPpmjfzRDttU1EY4kYv31/1XR/ttvfMthSlJdIfXpesrMzjOzDmCpu89rRdZjlrfT2pSitbGBozXZg1TZP2zdxtee2s3tW7dPe62hoYGVS1tobUpxxNLwjs19Y2lu37qdrzyxiy8+9krScURkkTBgYCzN8ESO3tHstNcbG1Icv7qTk4/qYlWIk2AVnGd2DfH4y4NMBNgo7eloIZvLk/UCyzvCu5P26I4Bnt41zKPbB9gzNJF0HJFFo9qzdzYB9wKnAN80sz8E3u3uvwN8ArgTaAM+Pt+/uW8iwwuvjZItFBgYTS9EbJEZjWdyFOJxE1O5O73DE2zrHaU7wBNvOl9g5+A4mZyzfGD61XYRkYUwNpFjaCJLOlugb2R6D52mlPHs7mFe7h/nV85em0DC2fWOpnmpd5RcvkBHcyOb1oQ1EUnfyATfeW4vZrD5yC6WtIZ1/mlramBZexONKcMCXC5IpF5VeyKXLHDZlM0/iF/bCVxysH/ziz98md7RDA7c9cMdvPOcdZUHFZmnd5xxNE+8so8zyqw1lc/neXT7ANk8PPR8bwLpZtfR3MgZa5ezdyTNWeu7k44jIovEtoExxjJRt76X+0envf5i7xiPbR8kmy/w9af3cFqZ+jVJE5kcDzzfSy5XoKezJbhG3/0/7eUne6LOUg8+9xq/dt6GhBO93ps3rwGi8ZzHaeZOkaoJq6P3IWhKHZj5qbFBs0BJdZ21oYcz13fPOIlQwQ13p+DhXc3sbG3ibaceRf9oWideEamajuYGUgYFh6am6V9DOlsbcJxMvkBna3hfU0Ymc/vHxoxMTu/lkbSmVIrRdA6zaHbe0Kxa2sZ7zluvyfdEqiy82vQgnb5uOQ8834sX4NRjNBOdVN9MJ65UKsWqJS0MjWdZ3RXmlPjHrV6iBp+IVNVR3e30dDQzmcmzafX0yZpWdLZy9VlrGZ7MctrasO7yATQ1GKPpLJmcY+Zz71BlJx65lLM3RBcjQ63f1eATqb7ab/St7+aC41aQzcNFJ65OOo7IfmbGFZvXsK1vjJ89ItzpvUVEqmn10jYuOXElAyNZLjph5bTXmxtTXHTCKiaz+bJLOiStpbGBTauXUnBY1h7eBb3T1y0nnctjZpx8VFfScUQkEDXf6DtxzVLef+GxZPMFrTklQTEzrj1/I9v6xjiuzNVsEZHFaFl7Mx+44Fj2jqTZPEOjpLWpgdam8LomAqxf0cGbTlrDeCbHKQH2MGpqSHHh8auSjiEigan5Rl8qZWrsSWJeG55ke/8YG3o6WFVmAeEjl7XNuHB7CLb3jdI7kub4NUu1SK6IVI2Z0ZgyZuoc+eLeEQbHs2xasyS42SfNbMbGqojUv1pd56/mG30iSbrnyV3sGZrkqGXtXHt+WDOkzWVsMsdXntjN8GSWPUOTvO3Uo5KOJCKLwPBElq8+uZuRySx7R9K8ZcuRr3t9cCzNV5/cw2g6R99ImitOPiKhpCIi9UONPpEKbOsbZ994lmw+vMH8c5nM5djRP046V6CrTev0iUh1TGTy7OgfJ5MrsKN/bNrr45k8L/ePkck7rwyqbpIwVXq3R6TaUnO/JWyFgvP8ayP8z+5hsvlC0nFkkWlIGX2jkzTNMBPZ3uFJntq5j/7RdJWTza2tqZFCwekbnaS9pearAhGpEe3NKYbGM7zcP0Zjanrd2daUIpMrMDCWpr05vGvT7s4Le0d4dvcQ6Vw+6TgiIvMSXm16kF4dnuTl/uhKYEtTimNXasIMqZ6WxhTrV3TQ2Di90eTuPLN7iEIB9o1nufD46bPUJWk8m6OrvZmW5hRe0PTZIlIdvaNpHOjqaOLV4ekXxMaz0aLnnW2N5AvhXcztHUmzvS/63tHUkOL4QJdFEBEpVfOX99ubGyjeZOlsqfk2rNSYdT3tFArO+p6Oaa+Z2f6r1B0BHpvL25rZtKaTNUvbOOWY8CYlcHeee3WYx18eZDwT3gLIInJojuhqo6utERyOXTm97lzV2cLStqjOPHZVeBdy25obSMXfnkKs20VEyqn52mpZezPnbuwh787SwGb4kvp35LI2ejpaaG0uP7X4meuWMzyZC3JmzIaGFO86ay3ZQoGWxvCmRh8Yy7BzYAKAl3rHNFueSJ3IO1z+s2sYz+TZsGJ6o28yXoKpUPAgu3cuaW3i3I09ZPMeZN0uIlJOeLXpIRgcz1AoQGdzI6ky4wNEFkpXWzODhQzLZjjxj2fzDI5naGlMBXlFOJUyWlLhNfgguoLe2GDk8s6ydn2xEqkXrXF3+HQuT3vL9PqnramBtuYG0tlCkIuzQ9RlP5Mr0NnSSIO+d4jIQUhqyYfwvoUepNeGJ/nhtgHyBcfpZl2ZbnYiC+W0Y5YxlsnRMcPV6Ede7GdwLMOarlbeuEmL5R6M1qYGfu7YFeQKhSCv9ovIockVnFzeKRRgMjN9zF5TQ4pzN/aQyRWCvFjWP5rmBy/1ky842XyB4zSmT0RqQM2P6ds3nuXF3jG294+zt8yAcJGFlEoZS1qbZrzD/GLvKK8MTvBS3/RpyWVuzY0pNfhE6kwmV2Bb/yh7R9IzLsnQ1BBm7wiAkcnc/u8drw1PJh1HRGRewqxRD0JXWxMbVrRTcFi5pCXpOCL7uTsbV3YwOJZl9dLWpOOIiAShqSHFxpVLGE/nOHpZW9JxDlpnayMbV3aQyztrVLeLSI2o+Ubfmq5Wzt7QQ67grO1uTzqOyH5mxrkbVrB3ZJI1XfpiICIC0eyX527sZngiy9HLa++8vaKzhbM3dJPJFTSkRERqRs03+gCOUWNPAtXV3kSXJiEREXmdVUtaWbWkdi+G1WJjVUQWN3P3pDMcEjPrBXaUbFoB9CUUZz6UrzIh55ua7XTg8VleD43yVabW8un4PLxCzhdyNtCxudCUrzJzHZ9JZqkFylwdK4AOd1851xtrttE3lZn9yN3PTDrHTJSvMiHnmytbyNlB+SpV6/lqPX/SQs4XcjbQsbnQlK8yIeULKct8KXN1HEzmmp+9U0RERERERGamRp+IiIiIiEgdq6dG398nHWAOyleZkPPNlS3k7KB8lar1fLWeP2kh5ws5G+jYXGjKV5mQ8oWUZb6UuTrmnbluxvSJiIiIiIjIdPV0p09ERERERESmUKNPRERERESkjqnRJyIiIiIiUsfU6BMREZFgmdlZSWcAMLOTzOyEKdvOSSrPVGZ2hpmtMrMGM/tFM3tT0plmY2YfSjpDOWa22czeFcpxJ3K41OxELmbWCGwClgP7gJ+6ezbZVNOZmQGrgV53zyedp0jlV5m5ys/MOoqvuftoMilrm8rw0M1WdvrsV6YWyi/UsoPZy8/Myl2INuAb7n559VKWCWH2KaIyzQE9wLXu3mtm97v7JUlmAzCzfyAqqzSwEtgNDAOr3P0DSWYDMLOHgOIXTot/nwQ84+4XJpPqADP7hrtfYWYfBS4F/gt4A7DL3a9PMJfOg1VmZse7+/NJ55hLXF8W6/ncfPZpXNhIC8PMfg34DeAJokptKXCKmd3m7ncmGg4wsxvd/XozuwT4K+B54GfM7C/c/UsJx1P5VWi28gN2An8cbx8GlprZEuDP3f3bCUXez8w+6u43mdkpwK1EJ+FG4Hp3fyjZdJH43z3IMgy9/OYqO332KxNy+YVedjCv8hsFHiFqFJQ2ELYkEHeqM939jQBmtgX4dzO7LuFMpX6mJN/T7n5V/PiBZGPtdzfRv+Pt7v4ggJnd6+5vTjTVAc3x7yuBi929AHzWzB5OIkzI58GZmNnFwA1AAficu98Vb7/b3a9MMttMzOzaqZuAj5jZTe5+WxKZZmNmN7v7R8zsrUTHxwvAOjP7vLt/Yc4/4O419wM8RHyXsmRbA/Bw0tniLPfHvx8EVsSP24DvJ51N5bew5Rf/tE95rQPYmnTuKWV7H9GXBIAVoeSL8wRbhqGX31xlp89+xfmCLb/Qy24+5Qc8BnSV2e9bAWTfCjSXPF9OdDfotaSzFfOVPH5ryeMHk85WkqUZ+CBwF/A24N6kM5VkexW4k+jCbVvJ9h8llCfY8+AsmbcSXchpBW4kWj+uCXgg6WyzZH4C+CZwLfAe4BrgKeA9SWebIe+3498PFI+PuA793nz2r9UxfYPAL5vZCjNrNrMVwDvi7SE4Mr560OPufQDuPsGBK5dJU/lVZrbySwMnT3n/ycBklTPOpDu+gtjt7i8AxGUcStlC2GUYevnNVXb67Fcm5PILvexg7vL7BWCizH4h3A36XWBZ8Ym7DxI1XD6SWKLX+4CZNQC4+z0AZtYM/HWiqUq4e8bd/xZ4N1EX2ScTjlTqHKI7J28g6sKLmXXG25IQ8nlwJubuw+4+6VGX2K/HP90J55qRu58KfAa4nOgi2V3ATg+g58sMtsd3VJ8EzjOzJuA0YGQ+O9fkmL74g/h+4DyiSniQqEvI5919Xv/jC8nMril5ere7D8e35X/X3f80qVxFZcpvH/B9VH7zMtvxB3QC1xN1Y0kBeaKrRp90912JBC5hZh8veXqzu++Ly/aT7v5bSeUqZWZHEGgZhl5+c5Wd6s7KhFx3hl52EP65WyQUIZ8HZ2JmfwLc4e47SrZtAT7h7lckl2x+LJr46DeIevGcnnSecsysBfgwcBFwLNE56HtEZfzqnPvXYqOvKD6BLAcGXQNcpcp0/Emt0rErSdLxJyJSfTXZvdPMLo0HJ/8z8GfAP5vZ/WZ2WcLRgGgwq5n9t5k9YGbvKtl+d5K5iuLZqTCzLWb23TjrVjO7IOlsAGbWb2Z3mtnbzaw16TxTHcrxZ2a3VC3gITCzm5POMJeQM4acDQ7kU91ZmZDrztDrTQj/+BMJXejnmnKUeeHNN29N3umzaDalN7n7eMm2DuA+d39Dcsn2Z9kK/DxRn+wbiPozf4go38UJRgPA4immzew+4IPu/kI8tuIrgZTfA0TjJ64EriAaWH03cI+7DyWZDeY+/szsDOBcDkxJ/oi7/yiZtNOFnm8mZna2uz+adI5yQspmZicBeXd/rmTbOe7+A9WdlQm57gy93oTwz921xsz+CPgVoq5/BeA3gb8EjuDA2MgX3P0qM9sEfI6oW20L8JAHsJSDHJyQzjXzpcwLb755a/JOH+EPcDV3Hwp4MGvok1G4uz/h7h9393OA3yc6iX0l4VxFMx5/ZvZp4NeBPURjfXYB7wvlqlHo+SBae6bMTwPRnQFlm4VFa4n9AXC9md1jZivjl/4i/q26szIh152h15sQ/vFXM8zsPKKJb0539y3AZcAr8cu/6u6nxj9XxdtuAT4dbzuRaMkZCVTo55pylHnhVZq3JtfpI5r56Xozu5HXD3B9T6KpDviGma0rDmZ19y+b2UvAJxLOVXQ3cAFwj5ktK5mM4pmEcxW9bkav+MvVJ+OfEMx2/P2rT19o9m4z+26VM87kjMDzQdhrdYWcDeZeS0x1Z2VCrjtDrzch/OOvlhwB9Ll7GvZffMDMZnv/zuITd396oQNKRUI/15SjzAuvorw12b1TJFRm9tdAO/BtDiw+fCmQdvePJpkNws8HYGaPAZdM7ZJmZt9y98sTilXMEGy2OMdWooWFM/Hz5cA/ETUGVycaTkQOG4smw3mYA/X5v7n7f5vZg7y+e+e33P06M3sfcBPRTH/3AV9w933VTy7zEfq5phxlXniV5q2rRp+Z3eLuH046x0zM7GZ3D2VNn2lqIF9N/Pua2WlMmdLd3X+cbLoDaiDfEUB/seFSsr3R3XMJxSpmCDZbnONsYLu77y3Z1gC8w93vmmW/mvhsJZ1jJiHnC/3fFsIuv5DFn+0LgIuJxvNdD7wX+L1y47TN7Eii8Z6/CGwCTineKZSwhH6uKUeZF16leWu20WeBT0ahfJUJPV85tTbwVxan0D9bynfoQs42G9WdlTOzq4BrgCXM0Oib8v5ngGvc/bFq5BOR5NVkoy+ejKKFqEvDEFEXtcuAXAhXC5WvMjWQr9wESAZ8I8TuACJFNfDZUr46zFakuvPwsWg2zoK7///4+f8j6r2xmTKNPjO7AviOu2fNbA3wY+A0n8eCziJSH2p1IpfQJ6NQvsqEnq/WBv6KFIX+2VK+QxdytiLVnYdPJ3CrmS0DcsALwAeA/yBa/7A4pq/P3S8D3gTcbGbFmVKvU4NPZHGp1Ubfj8zss0yfjOLxRFMdoHyVCT3fT4Aryw2kTShPzYqvON8EnEU0nfsDVZ9lAAAFQElEQVR24KNEMxE+B7QCI8Bn3P2OeJ/3Es1IuCt+/XPu/ulqZ69RoX+2lO/QhZytSHXnYRJ3y/y5Mi9dNMP7PwZ8bCEziZQysyuB/wROdPfn4jv9NwGXEF30mQTe6e7bzGw70bk+H+/+QXf/XgKx61pNdu+EmpiMQvkqEHK+Whv4GyqL5hb/HnCHu3823nYq0ZiUv3P3zfG2jUQnjpvd/Qtxo+9Md/8/ZtYD/JSom9Ir5f478nohf7ZA+SoRcjZQ3SmymJjZF4lmkv2Ou99gZlcDv0TU0CuY2dHAmLsPxo2+M4tLj8jCqNlGn4jUNosWub5hapc0M1sPfK3Y6Ct576fc/bTSRl/82iPAhzURhIiISPLiJUV+SjSz7Ffd/QQz+xiwwd1/p8z7t6NG34IrN6haRKQaNgPznTnuceCEqRvNbC1RF8+nDmMuEREROXRvJ5qg6XlgwMxOB74IvNXMnjCzT8U9E0o9EL/2g6qnXSTU6BORWmBTnv+ymT0LvETU7XOyzD4iIiJSfVcDxbVh7wKudvedROtD/gFQAL5jZpeW7HOxu5/q7udUN+rioUZfnTGz1Wb2L2b2kpk9ZmbfjwfTioTmWeCMeb73NKJJIIr+zd1PIlqY+FPxhDAih52ZuZn9Y8nzRjPrNbOvlWxrMrPH4sf5+Gp18Wd99VOLiCQjHmt/CfD5uNvmdUQXas3d0+5+r7tfB/w50R1BqRI1+upIPDHGl4HvuvtGdz8DeBdw9JT31eqsrVJf7gdazOz9xQ1mdhawrvRN8ZfmvwJunfoH3P37wD8CQaxDJnVpDNhsZm3x88uJZo4tdT7RpEQAE/HV6uLP9irlFBEJwVXAne6+zt3Xu/sxwDbgQjM7Evav2bkF2JFgzkVHjb76cgmQKc6ECODuO9z9VjN7r5n9u5ndA9xnZt1m9mUze8rMHjGzLQBmdoOZ/V5xfzN7xszWxz/Pmdkd8T7/YWbt1f9flHrh0SxSVwKXm9mLcXfNG4DdwLFm9mMz+wnROIBb3f0LM/ypvwTeZ2ZLqpFbFqV7gbfEj68G/nXK61fE7xERWeyuBu6esu1LwO3APWb2DNE4/BzwN9WNtrjpjk99OYnZ12Q6D9ji7gNmdivwY3d/ezwz4p3AqXP8/U3Ar7v7VjO7Dfgg0R0YkUPi7ruBd5Z5qa3MtuI+txOdPEr/hrp3ykK6C/iTuEvnFuA2oq7FRRcD/zd+3GZmT8SPt7m7uteLyKLh7heV2XYLcMss+6xfwEgS052+OmZmnzGzJ83sh/Gmb7n7QPz4fKJucbj7/UCPmXXN8Sdfcfet8eN/iv+GiEhdc/engPVEV7C/Xvpa3F1pwN3H402l3TvV4BMRkSCo0VdfngVOLz5x9w8BlwIr401jJe+dOhsigBPdbi89LlqnvD71/SIii8FXiXo2TO3a+Wbgm9WPIyIiMn9q9NWX+4FWM/vtkm0zjbv7LvCrAGZ2EdDn7sPAduKGY7yuyoaSfdaa2Xnx46uBhw9bchGRsN0G/Km7Pz1lu8bziYhI8NToqyPxxBhvB95oZtvM7FHgDuD3y7z9BuBMM3sKuBG4Jt7+JaA7HpPy28DzJfv8BLgm3qcb+LsF+R8REQmMu+9095tLt5lZA3Ccuz+XUCwREZF5saidIDK7eNr8r7n75oSjiIgEwczOB97t7r+VdBYREZHZaPZOERGRQ+DuD6Nu7iIiUgN0p09ERERERKSOaUyfiIiIiIhIHVOjT0REREREpI6p0SciIiIiIlLH1OgTERERERGpY2r0iYiIiIiI1LH/Be+bxL3Rf8D2AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from pandas.plotting import scatter_matrix\n",
+ "\n",
+ "attributes = [\"Group\", \"CDR\", \"M/F\", \"SES\", \"ASF\"]\n",
+ "\n",
+ "scatter_matrix(data[attributes], figsize=(15, 11), alpha=0.3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:45.433703Z",
+ "iopub.status.busy": "2021-02-21T05:24:45.433017Z",
+ "iopub.status.idle": "2021-02-21T05:24:47.540106Z",
+ "shell.execute_reply": "2021-02-21T05:24:47.540628Z"
+ },
+ "papermill": {
+ "duration": 2.163236,
+ "end_time": "2021-02-21T05:24:47.540769",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:45.377533",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import plotly.express as px\n",
+ "\n",
+ "fig = px.scatter(data, x='Group', y='SES', color='Group')\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:47.650865Z",
+ "iopub.status.busy": "2021-02-21T05:24:47.649810Z",
+ "iopub.status.idle": "2021-02-21T05:24:47.721817Z",
+ "shell.execute_reply": "2021-02-21T05:24:47.722413Z"
+ },
+ "papermill": {
+ "duration": 0.129299,
+ "end_time": "2021-02-21T05:24:47.722563",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:47.593264",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import plotly.express as px\n",
+ "\n",
+ "fig = px.scatter(data, x='Group', y='Age', color='Group')\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:47.832887Z",
+ "iopub.status.busy": "2021-02-21T05:24:47.831861Z",
+ "iopub.status.idle": "2021-02-21T05:24:47.904040Z",
+ "shell.execute_reply": "2021-02-21T05:24:47.904522Z"
+ },
+ "papermill": {
+ "duration": 0.130189,
+ "end_time": "2021-02-21T05:24:47.904674",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:47.774485",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import plotly.express as px\n",
+ "\n",
+ "fig = px.scatter(data, x='Group', y='ASF', color='Group')\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.053096,
+ "end_time": "2021-02-21T05:24:48.011350",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:47.958254",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Checking For Missig/Null Values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:48.126795Z",
+ "iopub.status.busy": "2021-02-21T05:24:48.125994Z",
+ "iopub.status.idle": "2021-02-21T05:24:48.130278Z",
+ "shell.execute_reply": "2021-02-21T05:24:48.129746Z"
+ },
+ "papermill": {
+ "duration": 0.065537,
+ "end_time": "2021-02-21T05:24:48.130397",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.064860",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Subject ID 0\n",
+ "MRI ID 0\n",
+ "Group 0\n",
+ "Visit 0\n",
+ "MR Delay 0\n",
+ "M/F 0\n",
+ "Hand 0\n",
+ "Age 0\n",
+ "EDUC 0\n",
+ "SES 19\n",
+ "MMSE 2\n",
+ "CDR 0\n",
+ "eTIV 0\n",
+ "nWBV 0\n",
+ "ASF 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.053518,
+ "end_time": "2021-02-21T05:24:48.237952",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.184434",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### Taking median values for the missing values of MMSE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:48.355837Z",
+ "iopub.status.busy": "2021-02-21T05:24:48.355128Z",
+ "iopub.status.idle": "2021-02-21T05:24:48.357901Z",
+ "shell.execute_reply": "2021-02-21T05:24:48.358483Z"
+ },
+ "papermill": {
+ "duration": 0.066666,
+ "end_time": "2021-02-21T05:24:48.358626",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.291960",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Subject ID 0\n",
+ "MRI ID 0\n",
+ "Group 0\n",
+ "Visit 0\n",
+ "MR Delay 0\n",
+ "M/F 0\n",
+ "Hand 0\n",
+ "Age 0\n",
+ "EDUC 0\n",
+ "SES 19\n",
+ "MMSE 0\n",
+ "CDR 0\n",
+ "eTIV 0\n",
+ "nWBV 0\n",
+ "ASF 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "median = data['MMSE'].median()\n",
+ "data['MMSE'].fillna(median, inplace=True)\n",
+ "data.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.054757,
+ "end_time": "2021-02-21T05:24:48.468036",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.413279",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### Taking median values for the missing values of SES"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:48.580903Z",
+ "iopub.status.busy": "2021-02-21T05:24:48.580254Z",
+ "iopub.status.idle": "2021-02-21T05:24:48.589172Z",
+ "shell.execute_reply": "2021-02-21T05:24:48.589795Z"
+ },
+ "papermill": {
+ "duration": 0.067076,
+ "end_time": "2021-02-21T05:24:48.589954",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.522878",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Subject ID 0\n",
+ "MRI ID 0\n",
+ "Group 0\n",
+ "Visit 0\n",
+ "MR Delay 0\n",
+ "M/F 0\n",
+ "Hand 0\n",
+ "Age 0\n",
+ "EDUC 0\n",
+ "SES 0\n",
+ "MMSE 0\n",
+ "CDR 0\n",
+ "eTIV 0\n",
+ "nWBV 0\n",
+ "ASF 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "median = data['SES'].median()\n",
+ "data['SES'].fillna(median, inplace=True)\n",
+ "data.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.054489,
+ "end_time": "2021-02-21T05:24:48.700670",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.646181",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Train-Test Split"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.055984,
+ "end_time": "2021-02-21T05:24:48.812635",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.756651",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Prepare the data for X and y where, \n",
+ "\n",
+ "1. X = The columns/features for **making the prediction**\n",
+ "2. y = The **predicted value**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:48.926932Z",
+ "iopub.status.busy": "2021-02-21T05:24:48.926288Z",
+ "iopub.status.idle": "2021-02-21T05:24:48.933312Z",
+ "shell.execute_reply": "2021-02-21T05:24:48.932717Z"
+ },
+ "papermill": {
+ "duration": 0.065077,
+ "end_time": "2021-02-21T05:24:48.933436",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.868359",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "y = data['Group'].values\n",
+ "X = data[['M/F', 'Age', 'EDUC', 'SES', 'MMSE', 'eTIV', 'nWBV', 'ASF']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.055011,
+ "end_time": "2021-02-21T05:24:49.044676",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:48.989665",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### Train-Test distribution Without Stratified Sampling"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:49.159712Z",
+ "iopub.status.busy": "2021-02-21T05:24:49.158704Z",
+ "iopub.status.idle": "2021-02-21T05:24:49.174698Z",
+ "shell.execute_reply": "2021-02-21T05:24:49.175197Z"
+ },
+ "papermill": {
+ "duration": 0.075266,
+ "end_time": "2021-02-21T05:24:49.175352",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:49.100086",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In Training Split:\n",
+ "0 158\n",
+ "1 140\n",
+ "Name: 0, dtype: int64\n",
+ "\n",
+ "In Testing Split:\n",
+ "1 43\n",
+ "0 32\n",
+ "Name: 0, dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "# by default test_size= 0.25\n",
+ "X_trainval, X_test, y_trainval, y_test = train_test_split(X, y, test_size= 0.20, random_state=42)\n",
+ "\n",
+ "df_ytrain = pd.DataFrame(y_trainval)\n",
+ "df_ytest = pd.DataFrame(y_test)\n",
+ "\n",
+ "print('In Training Split:')\n",
+ "print(df_ytrain[0].value_counts())\n",
+ "\n",
+ "print('\\nIn Testing Split:')\n",
+ "print(df_ytest[0].value_counts())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.055463,
+ "end_time": "2021-02-21T05:24:49.286592",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:49.231129",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### With Stratified Sampling"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:49.402123Z",
+ "iopub.status.busy": "2021-02-21T05:24:49.401433Z",
+ "iopub.status.idle": "2021-02-21T05:24:49.418062Z",
+ "shell.execute_reply": "2021-02-21T05:24:49.417434Z"
+ },
+ "papermill": {
+ "duration": 0.075377,
+ "end_time": "2021-02-21T05:24:49.418177",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:49.342800",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In Training Split:\n",
+ "0 152\n",
+ "1 146\n",
+ "Name: 0, dtype: int64\n",
+ "\n",
+ "In Testing Split:\n",
+ "0 38\n",
+ "1 37\n",
+ "Name: 0, dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "# by default test_size= 0.25\n",
+ "X_trainval, X_test, y_trainval, y_test = train_test_split(X, y, test_size= 0.20, random_state=42, stratify=y)\n",
+ "\n",
+ "\n",
+ "df_ytrain = pd.DataFrame(y_trainval)\n",
+ "df_ytest = pd.DataFrame(y_test)\n",
+ "\n",
+ "print('In Training Split:')\n",
+ "print(df_ytrain[0].value_counts())\n",
+ "\n",
+ "print('\\nIn Testing Split:')\n",
+ "print(df_ytest[0].value_counts())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.056065,
+ "end_time": "2021-02-21T05:24:49.530652",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:49.474587",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### Scale the dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:49.651835Z",
+ "iopub.status.busy": "2021-02-21T05:24:49.650741Z",
+ "iopub.status.idle": "2021-02-21T05:24:49.660072Z",
+ "shell.execute_reply": "2021-02-21T05:24:49.659484Z"
+ },
+ "papermill": {
+ "duration": 0.073448,
+ "end_time": "2021-02-21T05:24:49.660201",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:49.586753",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "# here StandardScaler() means z = (x - u) / s\n",
+ "scaler = StandardScaler().fit(X_trainval)\n",
+ "#scaler = MinMaxScaler().fit(X_trainval)\n",
+ "X_trainval_scaled = scaler.transform(X_trainval)\n",
+ "X_test_scaled = scaler.transform(X_test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:49.777554Z",
+ "iopub.status.busy": "2021-02-21T05:24:49.776541Z",
+ "iopub.status.idle": "2021-02-21T05:24:49.782686Z",
+ "shell.execute_reply": "2021-02-21T05:24:49.783257Z"
+ },
+ "papermill": {
+ "duration": 0.066296,
+ "end_time": "2021-02-21T05:24:49.783400",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:49.717104",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[-0.87966444, 0.38449006, -0.87500081, ..., -0.30880564,\n",
+ " 0.16961408, 0.21548547],\n",
+ " [ 1.13679712, 1.04832574, -0.87500081, ..., 1.23805919,\n",
+ " -0.67676996, -1.21558429],\n",
+ " [-0.87966444, -0.9431813 , -1.22928103, ..., -1.08511327,\n",
+ " 0.4605586 , 1.14751551],\n",
+ " ...,\n",
+ " [-0.87966444, -0.01381135, 1.2506805 , ..., -0.92985174,\n",
+ " 0.01091708, 0.94202857],\n",
+ " [-0.87966444, -1.20871557, -0.87500081, ..., -0.00978344,\n",
+ " 0.5663566 , -0.10742258],\n",
+ " [-0.87966444, 0.11895579, 1.2506805 , ..., -1.38413547,\n",
+ " 0.4605586 , 1.56582821]])"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X_trainval_scaled"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:49.907580Z",
+ "iopub.status.busy": "2021-02-21T05:24:49.906515Z",
+ "iopub.status.idle": "2021-02-21T05:24:49.938315Z",
+ "shell.execute_reply": "2021-02-21T05:24:49.937670Z"
+ },
+ "papermill": {
+ "duration": 0.09737,
+ "end_time": "2021-02-21T05:24:49.938439",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:49.841069",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " M/F | \n",
+ " Age | \n",
+ " EDUC | \n",
+ " SES | \n",
+ " MMSE | \n",
+ " eTIV | \n",
+ " nWBV | \n",
+ " ASF | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 298.000000 | \n",
+ " 298.000000 | \n",
+ " 298.000000 | \n",
+ " 298.000000 | \n",
+ " 298.000000 | \n",
+ " 298.000000 | \n",
+ " 298.000000 | \n",
+ " 298.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 0.436242 | \n",
+ " 77.104027 | \n",
+ " 14.469799 | \n",
+ " 2.489933 | \n",
+ " 27.355705 | \n",
+ " 1483.701342 | \n",
+ " 0.730587 | \n",
+ " 1.198638 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 0.496752 | \n",
+ " 7.544654 | \n",
+ " 2.827372 | \n",
+ " 1.116859 | \n",
+ " 3.689231 | \n",
+ " 174.192649 | \n",
+ " 0.037871 | \n",
+ " 0.136491 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 0.000000 | \n",
+ " 60.000000 | \n",
+ " 6.000000 | \n",
+ " 1.000000 | \n",
+ " 4.000000 | \n",
+ " 1106.000000 | \n",
+ " 0.644000 | \n",
+ " 0.883000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 0.000000 | \n",
+ " 71.250000 | \n",
+ " 12.000000 | \n",
+ " 2.000000 | \n",
+ " 27.000000 | \n",
+ " 1357.000000 | \n",
+ " 0.699250 | \n",
+ " 1.107250 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 0.000000 | \n",
+ " 77.000000 | \n",
+ " 14.000000 | \n",
+ " 2.000000 | \n",
+ " 29.000000 | \n",
+ " 1462.000000 | \n",
+ " 0.731000 | \n",
+ " 1.200500 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 1.000000 | \n",
+ " 82.000000 | \n",
+ " 16.000000 | \n",
+ " 3.000000 | \n",
+ " 30.000000 | \n",
+ " 1585.250000 | \n",
+ " 0.757000 | \n",
+ " 1.293000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 1.000000 | \n",
+ " 96.000000 | \n",
+ " 23.000000 | \n",
+ " 5.000000 | \n",
+ " 30.000000 | \n",
+ " 1987.000000 | \n",
+ " 0.837000 | \n",
+ " 1.587000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " M/F Age EDUC SES MMSE \\\n",
+ "count 298.000000 298.000000 298.000000 298.000000 298.000000 \n",
+ "mean 0.436242 77.104027 14.469799 2.489933 27.355705 \n",
+ "std 0.496752 7.544654 2.827372 1.116859 3.689231 \n",
+ "min 0.000000 60.000000 6.000000 1.000000 4.000000 \n",
+ "25% 0.000000 71.250000 12.000000 2.000000 27.000000 \n",
+ "50% 0.000000 77.000000 14.000000 2.000000 29.000000 \n",
+ "75% 1.000000 82.000000 16.000000 3.000000 30.000000 \n",
+ "max 1.000000 96.000000 23.000000 5.000000 30.000000 \n",
+ "\n",
+ " eTIV nWBV ASF \n",
+ "count 298.000000 298.000000 298.000000 \n",
+ "mean 1483.701342 0.730587 1.198638 \n",
+ "std 174.192649 0.037871 0.136491 \n",
+ "min 1106.000000 0.644000 0.883000 \n",
+ "25% 1357.000000 0.699250 1.107250 \n",
+ "50% 1462.000000 0.731000 1.200500 \n",
+ "75% 1585.250000 0.757000 1.293000 \n",
+ "max 1987.000000 0.837000 1.587000 "
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X_trainval.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "papermill": {
+ "duration": 0.057412,
+ "end_time": "2021-02-21T05:24:50.054067",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:49.996655",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "## Data Visualization"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2021-02-21T05:24:50.175069Z",
+ "iopub.status.busy": "2021-02-21T05:24:50.174376Z",
+ "iopub.status.idle": "2021-02-21T05:24:51.959428Z",
+ "shell.execute_reply": "2021-02-21T05:24:51.958796Z"
+ },
+ "papermill": {
+ "duration": 1.847829,
+ "end_time": "2021-02-21T05:24:51.959546",
+ "exception": false,
+ "start_time": "2021-02-21T05:24:50.111717",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAANeCAYAAACI527yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde7hkdX3v+ffn0F64KRBkB4HYmMEL2vEyW6OSZHaCRgQjOicaDGqTkNPJRA0mnRNbc+ZoJuNMm4hJDuYy7Y1WCYqKgmIcCXHHOAkYMGiDrYLSYkMLGq9NjNrkO3/U6qTY7N27du3aVauq3q/nqaeq1qXq8/vtqlq1v7XWb6WqkCRJkiRJ0nT6T6MOIEmSJEmSpNGxOCRJkiRJkjTFLA5JkiRJkiRNMYtDkiRJkiRJU8zikCRJkiRJ0hSzOCRJkiRJkjTFLA5JkiRJkiRNMYtDkiRJXZLMJ/lGkvuNOoskqb2S7Ery3SR7uy5vSHJOkru7pt2S5K1JHta17lyS3Ys85nySX+m6/7Ak707ytSTfSvLpJL+V5KBhtVPTweKQJkbz4fz9JEcvmH59kkqyvmva55sP2gubdbo/0H9h2NklSe3QbCt+EijgWSMNI0kaBz9XVYd1XV7STP+HqjoMeCDwVOC7wHVJHt3rAyf5UeAa4MvAhqp6IPBcYBY4fKCt0NSzOKRJcwvw/P13kmwADu5eoPmQ/U9V9flm0h8s+EB/1/DiSpJa5kXA1cCFwMb9E5P8UJIPJPl2kn9M8n8m+XjX/EckuTLJ15N8Lsnzhh9dktQ2VXV3VX2hqn4d+Fvg1StY/feAv6+q36qqPc3jfa6qfrGqvrkGcTXFLA5p0rydzhf7/TYCb1uwzBnAh4aWSJI0Tl4EXNRcnp5kppn+p8BdwA/T2bZ0F44OBa4E/hI4hs6PFH+W5FFDzC1Jar9L6eyd2qunAu9ZoyzSPVgc0qS5GnhAkkc2x+H+AvCOBcucDlwx9GSSpFZL8hPAQ4BLquo64AvALzbbk/8MvKqq/qWqPgNs71r1mcCuqnprVe2rqk8C7wV+fshNkCQN3/uTfLPr8l8OsOztwFEreOwfAvasLp7UG4tDmkT79x56GvBZ4Lb9M5IcAjyBzi6d+/1214f514aaVJLUJhuBj1TV/m3BXzbTHgSsozPmw37dtx8C/Hj3PwfA2XT2MpIkTbZnV9URXZc3HmDZ44CvN7f3AfdZZJn7AD9obv8zcOzgokpLWzfqANIaeDvwMeBE7n1I2al0jtv9165pr6uq/zascJKk9klyMPA84KAkX2km3w84Apih8yX+eGD/eHUndK3+ZeBvq+ppQ4orSRpPzwH+rrl9K3B0ksOqai9AktD5weFLzTJ/TWfP1bcOO6imj3sOaeJU1ZfoDEx9Op3jert5SJkkaTHPBu4GTgYe21weSedL/IvobE9eneSQJI/gnuPbfRB4WJIXJrlPc3lCkkcOtwmSpLZJclCSE5NcAMzRGWSaqrqVzpnIXpvksCT3A/4rnR8jrm5WfxXwlCR/mOSHm8f7n5K8I8kRw26LJpvFIU2qc4Gfqaq7Fkx/Bg5GLUm6t43AW6vq1qr6yv4L8AY6h4i9hM7piL9CZw/Vi4HvAVTVd4CfBc6iM57EV4DX0tnzSJI02T6QZG/X5X3N9Ccn2Qt8G5gHHgA8oap2dK37C3ROZHAznaEwTgVO33+UQ1V9AXgysB64Mcm36Ixpdy3wnTVvmaZKqmrUGaSBSLIL+JWq+usF09fROW53A/DOqnp017wLgd0eViZJWokkrwV+uKo2LruwJElSy1kc0tRI8jvA0VX1O6POIkkaL82hZPcFdtA5scGH6Pwg8f6RBpMkSRoAB6TWNNkFfGDUISRJY+lwOoeSPRi4EzgfuGykiSRJkgbEPYckSZIkSZKmmANSS5IkSZIkTbFWHFZ29NFH1/r161e83l133cWhhx46+EAtMultnPT2weS30fYt7rrrrvtaVT1oDSJpCZO6LWlzPrP1x2z9mcZsbkuGr99tyTC0+T3QbRxyjkNGGI+c45ARxiPnqLclrSgOrV+/nmuvvXbF683PzzM3Nzf4QC0y6W2c9PbB5LfR9i0uyZcGn0YHMqnbkjbnM1t/zNafaczmtmT4+t2WDEOb3wPdxiHnOGSE8cg5DhlhPHKOelviYWWSJEmSJElTzOKQJEmSJEnSFLM4JEmSJEmSNMUsDkmSJEmSJE0xi0OSJEmSJElTzOKQJEmSJEnSFLM4JEmSJEmSNMUsDkmSJEmSJE0xi0OSJEmSJElTbN2oA6zGjtu+xTlbrlh2uV1bzxhCGkmS1Kv1PWy/wW24JGlpbkukwXHPIUmSJEmSpClmcUiSJEmSJGmKWRySJEmSJEmaYhaHJEmSJEmSppjFIUmSJEmSpClmcUiSJEmSJGmKLVscSvKWJHcmuWHB9Jcm+VySG5P8Qdf0VyS5uZn39LUILUmSJEmSpMFY18MyFwJvAN62f0KSnwbOBH6sqr6X5Jhm+snAWcCjgAcDf53kYVV196CDS5IkSZIkafWW3XOoqj4GfH3B5P8N2FpV32uWubOZfibwzqr6XlXdAtwMPHGAeSVJkiRJkjRAvew5tJiHAT+Z5DXAvwK/XVX/CBwHXN213O5m2r0k2QRsApiZmWF+fn7FIWYOhs0b9i27XD+P3RZ79+4d6/zLmfT2weS30fZJkiRJ0njrtzi0DjgSeBLwBOCSJA8FssiytdgDVNU2YBvA7Oxszc3NrTjEBRddxvk7lm/CrrNX/thtMT8/Tz99My4mvX0w+W20fZIkSZI03vo9W9lu4NLq+ATwb8DRzfQTupY7Hrh9dRElSZIkSZK0VvotDr0f+BmAJA8D7gt8DbgcOCvJ/ZKcCJwEfGIQQSVJkiRJkjR4vZzK/mLgH4CHJ9md5FzgLcBDm9PbvxPY2OxFdCNwCfAZ4MPAiz1TmSRJkqS1lOQ3k9yY5IYkFye5f5KjklyZ5Kbm+shR55Sktlp2wJ6qev4Ss16wxPKvAV6zmlCSJEmS1IskxwG/AZxcVd9NcglwFnAycFVVbU2yBdgCvHyEUSWptfo9rEySJEmS2mIdcHCSdcAhdMY9PRPY3szfDjx7RNkkqfUsDkmSJEkaW1V1G/A64FZgD/CtqvoIMFNVe5pl9gDHjC6lJLVbv6eylyRJkqSRa8YSOhM4Efgm8O4kiw6BscT6m4BNADMzM8zPz69FzFXbu3dva7N1G2bOzRv29bTcwjz25eCMQ0YYj5yjzmhxSJIkSdI4eypwS1V9FSDJpcBTgDuSHFtVe5IcC9y52MpVtQ3YBjA7O1tzc3PDSb1C8/PztDVbt2HmPGfLFT0tt+vsuXvcty8HZxwywnjkHHVGDyuTJI1MkhOSfDTJzuYsM+c101+d5LYk1zeX00edVZLUWrcCT0pySJIApwI7gcuBjc0yG4HLRpRPklrPPYckSaO0D9hcVZ9McjhwXZIrm3l/VFWvG2E2SdIYqKprkrwH+CSd7co/0dkT6DDgkiTn0ikgPXd0KSWp3SwOSZJGphkgdP9god9JshM4brSpJEnjpqpeBbxqweTv0dmLSJK0DItDkqRWSLIeeBxwDXAK8JIkLwKupbN30TcWWWfVg4iOevC/5bQ532qy9TuIaK8mtd/Wmtn60+ZskiT1wuKQJGnkkhwGvBd4WVV9O8mfA78PVHN9PvDLC9cbxCCiox78bzltzreabP0OItqrSe23tWa2/rQ5myRJvXBAaknSSCW5D53C0EVVdSlAVd1RVXdX1b8BbwSeOMqMkiRJ0iSzOCRJGpnmrDJvBnZW1eu7ph/btdhzgBuGnU2SJEmaFh5WJkkapVOAFwI7klzfTHsl8Pwkj6VzWNku4FdHE0+SJEmafBaHJEkjU1UfB7LIrA8NO4skSZI0rTysTJIkSZIkaYpZHJIkSZIkSZpiHlYmSZK0Auu3XNHTcru2nrHGSSRJkgbDPYckSZIkSZKm2LLFoSRvSXJnknudRjjJbyepJEd3TXtFkpuTfC7J0wcdWJIkSZIkSYPTy55DFwKnLZyY5ATgacCtXdNOBs4CHtWs82dJDhpIUkmSJEmSJA3cssWhqvoY8PVFZv0R8DtAdU07E3hnVX2vqm4BbgaeOIigkiRJkiRJGry+BqRO8izgtqr6VJLuWccBV3fd391MW+wxNgGbAGZmZpifn19xjpmDYfOGfcsu189jt8XevXvHOv9yJr19MPlttH2SJEmSNN5WXBxKcgjwu8DPLjZ7kWm1yDSqahuwDWB2drbm5uZWGoULLrqM83cs34RdZ6/8sdtifn6efvpmXEx6+2Dy22j7JEmSJGm89bPn0I8CJwL79xo6HvhkkifS2VPohK5ljwduX21ISZIkSZIkrY0Vn8q+qnZU1TFVtb6q1tMpCD2+qr4CXA6cleR+SU4ETgI+MdDEkiRJkiRJGpheTmV/MfAPwMOT7E5y7lLLVtWNwCXAZ4APAy+uqrsHFVaSJEmSJEmDtexhZVX1/GXmr19w/zXAa1YXS5IkSZIkScOw4sPKJEmSJEmSNDksDkmSJEmSJE0xi0OSJEmSJElTzOKQJEmSJEnSFLM4JEmSJEmSNMUsDkmSJEmSJE0xi0OSJEmSJElTbN2oA0jSqKzfcsWyy1x42qFDSCJJkiRJo+OeQ5IkSZIkSVPM4pAkSZIkSdIUszgkSZIkSZI0xSwOSZIkSZIkTTGLQ5IkSZIkSVPM4pAkSZIkSdIUszgkSZIkSZI0xdaNOoAkSZIkSerP+i1X9LTcrq1nrHESjTP3HJIkSZIkSZpiyxaHkrwlyZ1Jbuia9odJPpvk00nel+SIrnmvSHJzks8lefpaBZckjb8kJyT5aJKdSW5Mcl4z/agkVya5qbk+ctRZJUmSpEnVy55DFwKnLZh2JfDoqvox4PPAKwCSnAycBTyqWefPkhw0sLSSpEmzD9hcVY8EngS8uNmWbAGuqqqTgKua+5IkSZLWwLLFoar6GPD1BdM+UlX7mrtXA8c3t88E3llV36uqW4CbgScOMK8kaYJU1Z6q+mRz+zvATuA4OtuT7c1i24FnjyahJEmSNPkGMSD1LwPvam4fR6dYtN/uZtq9JNkEbAKYmZlhfn5+xU88czBs3rBv2eX6eey22Lt371jnX86ktw8mv43j3L5ePj/GuX3jJsl64HHANcBMVe2BTgEpyTFLrLPqbUnb/8ZtzreabL28/6D/bfha9ttqs0/q33StmU2SpLWzquJQkt+lc0jARfsnLbJYLbZuVW0DtgHMzs7W3Nzcip//gosu4/wdyzdh19krf+y2mJ+fp5++GReT3j6Y/DaOc/vO6eHMDheedujYtm+cJDkMeC/wsqr6drLY5uTeBrEtaftruM35VpOtl/cf9L8NX8t+W232Sf2brjWzSZK0dvo+W1mSjcAzgbOran8BaDdwQtdixwO39x9PkjTpktyHTmHooqq6tJl8R5Jjm/nHAneOKp8kqf2SHJHkPc1Jc3YmebInN5Ck3vVVHEpyGvBy4FlV9S9dsy4HzkpyvyQnAicBn1h9TEnSJEpnF6E3Azur6vVdsy4HNja3NwKXDTubJGms/Anw4ap6BPAYOmPYeXIDSepRL6eyvxj4B+DhSXYnORd4A3A4cGWS65P8BUBV3QhcAnwG+DDw4qq6e83SS5LG3SnAC4GfabYn1yc5HdgKPC3JTcDTmvuSJN1LkgcAP0Xnxwaq6vtV9U08uYEk9WzZAXuq6vmLTH7zAZZ/DfCa1YSSJE2Hqvo4i49XB3DqMLNIksbWQ4GvAm9N8hjgOuA8hnhyg2EYl4HPh5mz3xMETFpfrvVJHg5k0vpylEadcRBnK5MkSZKkUVkHPB54aVVdk+RPWMEhZIM4ucEwjMvA58PM2e8JAiatL9f6JA8HMml9OUqjztj3gNSSJEmS1AK7gd1VdU1z/z10ikWe3ECSeuSeQ5IkSWtg/RK/5G7esO/ff+XdtfWMYUaSJlJVfSXJl5M8vKo+R+ew5M80l410xq3z5AaSdAAWhyRJkiSNu5cCFyW5L/BF4JfoHCVxSXNCnVuB544wnyS1msUhSZIkSWOtqq4HZheZ5ckNJKkHjjkkSZIkSZI0xSwOSZIkSZIkTTGLQ5IkSZIkSVPM4pAkSZIkSdIUc0BqSZI01hY7ZXz36eL387TxkiRJi3PPIUmSJEmSpClmcUiSJEmSJGmKWRySJEmSJEmaYhaHJEmSJEmSppjFIUmSJEmSpClmcUiSJEmSJGmKLVscSvKWJHcmuaFr2lFJrkxyU3N9ZNe8VyS5Ocnnkjx9rYJLkiRJkiRp9db1sMyFwBuAt3VN2wJcVVVbk2xp7r88ycnAWcCjgAcDf53kYVV192BjS5IkaaXWb7nigPM3b9jHOVuuYNfWM4aUSJIktcGyew5V1ceAry+YfCawvbm9HXh21/R3VtX3quoW4GbgiQPKKkmSJEmSpAHrZc+hxcxU1R6AqtqT5Jhm+nHA1V3L7W6m3UuSTcAmgJmZGebn51ce4uDOL1zL6eex22Lv3r1jnX85k94+mPw2jnP7evn8GOf2SZIkSVIv+i0OLSWLTKvFFqyqbcA2gNnZ2Zqbm1vxk11w0WWcv2P5Juw6e+WP3Rbz8/P00zfjYtLbB5PfxnFu3znLHF4BcOFph45t+yRJkiSpF/2ereyOJMcCNNd3NtN3Ayd0LXc8cHv/8SRJkiRJkrSW+i0OXQ5sbG5vBC7rmn5WkvslORE4CfjE6iJKkiRJkiRprSx7TFaSi4E54Ogku4FXAVuBS5KcC9wKPBegqm5McgnwGWAf8GLPVCZJkiRJktReyxaHqur5S8w6dYnlXwO8ZjWhJEmSJEmSNByDHpBakiRNufU9DPaulemlT3dtPWMISSRJ0iTqd8whSZIkSZIkTQCLQ5IkSZIkSVPM4pAkSZIkSdIUszgkSRqpJG9JcmeSG7qmvTrJbUmuby6njzKjJEmSNMksDkmSRu1C4LRFpv9RVT22uXxoyJkkSZKkqWFxSJI0UlX1MeDro84hSZIkTStPZS9JaquXJHkRcC2wuaq+sXCBJJuATQAzMzPMz8+v+En27t3b13rD0uZ8S2XbvGHfwJ6jl7Yv9nwzB997+qD6cbXt687Wa6ZenrPfvuq2P1sbX3Pj+F6QJGlcWBySJLXRnwO/D1RzfT7wywsXqqptwDaA2dnZmpubW/ETzc/P0896w9LmfEtlO2fLFQN7jl1n3/vxe3m+zRv2cf6Oe37N6eWxerHa9nVn6zVTL8/Zb191259tUH01SOP4XpAkaVxYHJIktU5V3bH/dpI3Ah8cYRxJkiSt0PpeftjYesYQkqgXjjkkSWqdJMd23X0OcMNSy0qSJElaHfcckiSNVJKLgTng6CS7gVcBc0keS+ewsl3Ar44soCRJkjThLA5Jkkaqqp6/yOQ3Dz2IJEmSNKU8rEySJEmSJGmKWRySJEmSJEmaYh5WJknShPNsIR32gyRJ0uLcc0iSJEmSJGmKrao4lOQ3k9yY5IYkFye5f5KjklyZ5Kbm+shBhZUkSZIkSdJg9V0cSnIc8BvAbFU9GjgIOAvYAlxVVScBVzX3JUmSJEmS1EKrPaxsHXBwknXAIcDtwJnA9mb+duDZq3wOSZIkSZIkrZG+B6SuqtuSvA64Ffgu8JGq+kiSmara0yyzJ8kxi62fZBOwCWBmZob5+fkVZ5g5GDZv2Lfscv08dlvs3bt3rPMvZ9LbB5PfxnFuXy+fH+PcPkmSJEnqRd/FoWYsoTOBE4FvAu9O8oJe16+qbcA2gNnZ2Zqbm1txhgsuuozzdyzfhF1nr/yx22J+fp5++mZcTHr7YPLbOM7tO6eHMxddeNqhY9s+SZKmSZKDgGuB26rqmUmOAt4FrAd2Ac+rqm+MLqEktddqDit7KnBLVX21qn4AXAo8BbgjybEAzfWdq48pSZIkSQd0HrCz675joUpSj/rec4jO4WRPSnIIncPKTqVTqb8L2Ahsba4vW21ISZKkSbS+hz0YJS0vyfHAGcBrgN9qJp8JzDW3twPzwMuHnU2SxsFqxhy6Jsl7gE8C+4B/onOY2GHAJUnOpVNAeu4ggkqSJEnSEv4Y+B3g8K5pQxsLdRjGZRzEYebsZfxIuPcYtJPWl/32wyAcKGObxgceh7/5qDOuZs8hqupVwKsWTP4enb2IJEmSJGlNJXkmcGdVXZdkbqXrD2Is1GEYl3Eeh5mzl/Ej4d5j0E5aX/bbD4NwoIy95BrW+MDj8DcfdcZVFYckSZIkacROAZ6V5HTg/sADkryDZizUZq8hx0KVpANYzYDUkiRJkjRSVfWKqjq+qtYDZwF/U1UvAC6nMwYqOBaqJB2QxSFJkiRJk2gr8LQkNwFPa+5LkhbhYWWSJEmSJkJVzdM5KxlV9c84Fqok9cTikCRJUsNTy0uSpGnkYWWSJEmSJElTzOKQJEmSJEnSFLM4JEmSJEmSNMUsDkmSJEmSJE0xi0OSJEmSJElTzOKQJEmSJEnSFLM4JEmSJEmSNMUsDkmSJEmSJE0xi0OSJEmSJElTzOKQJEmSJEnSFLM4JEmSJEmSNMUsDkmSJEmSJE2xVRWHkhyR5D1JPptkZ5InJzkqyZVJbmqujxxUWEnS5EnyliR3Jrmha5rbEkmSJGlIVrvn0J8AH66qRwCPAXYCW4Crquok4KrmviRJS7kQOG3BNLclkiRJ0pD0XRxK8gDgp4A3A1TV96vqm8CZwPZmse3As1cbUpI0uarqY8DXF0x2WyJJkiQNybpVrPtQ4KvAW5M8BrgOOA+Yqao9AFW1J8kxi62cZBOwCWBmZob5+fkVB5g5GDZv2Lfscv08dlvs3bt3rPMvZ9LbB5PfxnFuXy+fH+PcvjE3tG1J2//GB8q347Zv9fQYmzcsv8wg+66X91avesm12PP1+h1hFNYqW7991W1/tja+J9r8Xm1zNkmSerGa4tA64PHAS6vqmiR/wgp2+6+qbcA2gNnZ2Zqbm1txgAsuuozzdyzfhF1nr/yx22J+fp5++mZcTHr7YPLbOM7tO2fLFcsuc+Fph45t+6bBILYlbX8NHyhfL6/hXvWzrVwq27BzLfZ8mzfs6+k7wiisVbZ++6rb/mxt/O7U5vdqm7NJktSL1Yw5tBvYXVXXNPffQ6dYdEeSYwGa6ztXF1GSNIXclkiSJElD0ndxqKq+Anw5ycObSacCnwEuBzY20zYCl60qoSRpGrktkSRJkoZktfs0vxS4KMl9gS8Cv0Sn4HRJknOBW4HnrvI5JEkTLMnFwBxwdJLdwKuArbgtkSRJkoZiVcWhqroemF1k1qmreVxJ0vSoqucvMcttiSRJkjQEqxlzSJIkSZIkSWOunafxkCRJkiRpDK3v4aydu7aeMYQkUu8sDkmSpJ6+yC60ecO+gZ62fjH95NLqDeofm17/fv6TJEnSaHlYmSRJkiRJ0hSzOCRJkiRJkjTFLA5JkiRJkiRNMYtDkiRJkiRJU8zikCRJkiRJ0hSzOCRJkiRJkjTFPJW9JEnSBOj1tPHjasdt3+KcHtq4a+sZQ0gjSdJkcc8hSZIkSZKkKWZxSJIkSZIkaYpZHJIkSZIkSZpiFockSZIkSZKmmMUhSZIkSZKkKWZxSJIkSZIkaYqtujiU5KAk/5Tkg839o5JcmeSm5vrI1ceUJEmSJEnSWhjEnkPnATu77m8Brqqqk4CrmvuSJEmSJElqoVUVh5IcD5wBvKlr8pnA9ub2duDZq3kOSZIkSVpKkhOSfDTJziQ3Jjmvme4RDZLUo3WrXP+Pgd8BDu+aNlNVewCqak+SY1b5HJIkSZK0lH3A5qr6ZJLDgeuSXAmcQ+eIhq1JttA5ouHlI8ypFlu/5Yqeltu19Yw1TiKNRt/FoSTPBO6squuSzPWx/iZgE8DMzAzz8/MrzjBzMGzesG/Z5fp57LbYu3fvWOdfzqS3Dya/jePcvl4+P8a5fZIkTYPmh+n9P05/J8lO4Dg6RzTMNYttB+axOCRJi1rNnkOnAM9Kcjpwf+ABSd4B3JHk2GavoWOBOxdbuaq2AdsAZmdna25ubsUBLrjoMs7fsXwTdp298sdui/n5efrpm3Ex6e2DyW/jOLfvnB5+IbrwtEPHtn2SJE2bJOuBxwHX0OMRDYP40XoYxuUHq2Hm7OWHPrj3zgKLZez3sfrN1cvj9NqXg8y+UgfK2KYdOcbh/TPqjH0Xh6rqFcArAJo9h367ql6Q5A+BjcDW5vqyAeSUJEmSpCUlOQx4L/Cyqvp2kp7WG8SP1sMwLj/IDTNnLz/0wb13FlgsY7+P1W+uXh6n174cZPaVOlDGQfXDIIzD+2fUGQdxtrKFtgJPS3IT8LTmviRJkiStiST3oVMYuqiqLm0m39EcycCBjmiQJK1+QGoAqmqezjG8VNU/A6cO4nElSZIk6UDS2UXozcDOqnp916zL8YgGSerJQIpDkiRJUr96OUvQ5g1DCKJxdQrwQmBHkuubaa+kUxS6JMm5wK3Ac0eUT5Jaz+KQJEmSpLFVVR8HlhpgyCMaJKkHazHmkCRJkiRJksaExSFJkiRJkqQp5mFlkqTWSrIL+A5wN7CvqmZHm0iSJEmaPBaHJElt99NV9bVRh5AkSZImlYeVSZIkSZIkTTH3HJIktVkBH0lSwP9TVdu6ZybZBGwCmJmZYX5+fsVPcOfXv8UFF1227HIbjnvgih97EPbu3btkuzZv2DfcMAvMHDz6DEsxW39Wkq2X980gTz/fa7Z+PgdW60DvU0mSxoHFIUlSm51SVbcnOQa4Mslnq+pj+2c2xaJtALOzszU3N7fiJ7jgoss4f8fym8NdZ6/8sQdhfn6epdp1zpYrhhtmgc0b9vXUd6Ngtv5MQrZRvFcP9D6VJGkceFiZJKm1qur25vpO4H3AE0ebSJIkSZo8FockSa2U5NAkh++/DfwscMNoU0mSJEmTp537DUuSBDPA+5JAZ3v1l1X14dFGkiRJWr31PRwavnnDPubWPooEWBySJLVUVX0ReMyoc0iSJEmTzsPKJEmSJEmSppjFIUmSJEmSpCnmYWWSJPWgl7EBdm09Y+DPt3nDvpGfsl6SJEmTzT2HJEmSJEmSpljfxaEkJyT5aJgkh0EAACAASURBVJKdSW5Mcl4z/agkVya5qbk+cnBxJUmSJEmSNEir2XNoH7C5qh4JPAl4cZKTgS3AVVV1EnBVc1+SJEmSJEkt1PeYQ1W1B9jT3P5Okp3AccCZwFyz2HZgHnj5qlJKkiRJkiQt4UDjQ+4fw3GQ40NOmoEMSJ1kPfA44BpgpikcUVV7khyzxDqbgE0AMzMzzM/Pr/h5Zw7u/JGX089jt8XevXvHOv9yJr19MPltHOf29fL5Mc7tkyRJkqRerLo4lOQw4L3Ay6rq20l6Wq+qtgHbAGZnZ2tubm7Fz33BRZdx/o7lm7Dr7JU/dlvMz8/TT9+Mi0lvH0x+G8e5fb2cAerC0w4d2/ZJkiRJUi9WdbayJPehUxi6qKoubSbfkeTYZv6xwJ2riyhJkiRJkqS10veeQ+nsIvRmYGdVvb5r1uXARmBrc33ZqhJKkiRJPTrQmBP7OeaEJEn3tJrDyk4BXgjsSHJ9M+2VdIpClyQ5F7gVeO7qIkqSJEmSJGmtrOZsZR8Hlhpg6NR+H1eSJEmSJEnDM5CzlUmSJEmS1AsP/2wv/zbTa1UDUkuSJEmSJGm8WRySJEmSJEmaYh5WJkmSJEljxsN/JA2SxSFJkgakly/qkkZvkP9Ur99yBZs37OOcAzym/6BLktrOw8okSZIkSZKmmMUhSZIkSZKkKWZxSJIkSZIkaYpZHJIkSZIkSZpiFockSZIkSZKmmMUhSZIkSZKkKWZxSJIkSZIkaYqtG3UASZIkqW3Wb7li1BE0Rnp9vezaesYaJ5Gk/rjnkCRJkiRJ0hSzOCRJkiRJkjTFLA5JkiRJkiRNMYtDkiRJkiRJU2zNBqROchrwJ8BBwJuqautaPZckaTK5LZEkrZbbEkltt37LFWzesI9zDjC4/VoPaL8mew4lOQj4U+AZwMnA85OcvBbPJUmaTG5LJEmr5bZEknqzVoeVPRG4uaq+WFXfB94JnLlGzyVJmkxuSyRJq+W2RJJ6kKoa/IMmPw+cVlW/0tx/IfDjVfWSrmU2AZuauw8HPtfHUx0NfG2Vcdtu0ts46e2DyW+j7VvcQ6rqQYMOM03clvy7NuczW3/M1p9pzOa2ZJWGuC0Zhja/B7qNQ85xyAjjkXMcMsJ45BzptmStxhzKItPuUYWqqm3AtlU9SXJtVc2u5jHabtLbOOntg8lvo+3TGnJbQrvzma0/ZuuP2dSnoWxLhmFcXmfjkHMcMsJ45ByHjDAeOUedca0OK9sNnNB1/3jg9jV6LknSZHJbIklaLbclktSDtSoO/SNwUpITk9wXOAu4fI2eS5I0mdyWSJJWy22JJPVgTQ4rq6p9SV4C/L90Thn5lqq6cQ2eqvW7fw7ApLdx0tsHk99G26c14bbk37U5n9n6Y7b+mE0rNsRtyTCMy+tsHHKOQ0YYj5zjkBHGI+dIM67JgNSSJEmSJEkaD2t1WJkkSZIkSZLGgMUhSZIkSZKkKTYWxaEkpyX5XJKbk2xZZH6S/I9m/qeTPH4UOfvVQ/vObtr16SR/n+Qxo8i5Gsu1sWu5JyS5O8nPDzPfavXSviRzSa5PcmOSvx12xtXo4TX6wCQfSPKppn2/NIqc/UryliR3Jrlhiflj/Rmje0pyRJL3JPlskp1JnpzkqCRXJrmpuT6yRdleneS25vPj+iSnjyDXw7ue//ok307ysjb02wGyjbzfmny/2Xwu3pDk4iT3b0O/HSBbK/qtyXdek+3GJC9rprWl7xbL1pq+0/ha6jNtwTJzSb7Vtcx/H1K2e31f6vU92ct35TXM+IfNdvXTSd6X5Igl1t2VZEfTp9euVcYD5OzpM2TEffmurny7kly/xLpD6cskJyT5aPOd6cYk5zXT2/a6XCpnu16bVdXqC52B474APBS4L/Ap4OQFy5wO/BUQ4EnANaPOPeD2PQU4srn9jHFqX69t7Frub4APAT8/6twD/hseAXwG+JHm/jGjzj3g9r0SeG1z+0HA14H7jjr7Ctr4U8DjgRuWmD+2nzFeFv17bgd+pbl93+b9+QfAlmbalv2v55ZkezXw26Put66MBwFfAR7Sln5bItvI+w04DrgFOLi5fwlwThv67QDZRt5vTZ5HAzcAh9A5gcpfAye1pO+WytaKvvMyOZfuz7QF0+eAD44gz72+L/Xynuzlu+QaZ/xZYF1z+7VLfW4Au4CjR9iXy36GjLovF8w/H/jvo+xL4Fjg8c3tw4HPAye38HW5VM5WvTbHYc+hJwI3V9UXq+r7wDuBMxcscybwtuq4GjgiybHDDtqnZdtXVX9fVd9o7l4NHD/kjKvVy98Q4KXAe4E7hxluAHpp3y8Cl1bVrQBVNU5t7KV9BRyeJMBhdIpD+4Ybs39V9TE6mZcyzp8x6pLkAXS+7LwZoKq+X1XfpPM33t4sth14douytc2pwBeq6ku0oN8W6M7WFuuAg5Oso1NMuJ329Nti2drikcDVVfUvVbUP+FvgObSj75bKJg1aqz7Tlvi+1Mt7stf/BdYkY1V9pHmvQkv+l+rhu+dSRtqX+zXf+Z8HXLwWz92rqtpTVZ9sbn8H2Ennx4+2vS4Xzdm21+Y4FIeOA77cdX93M22ly7TVSrOfS2cPhnGybBuTHEfni9VfDDHXoPTyN3wYcGSS+STXJXnR0NKtXi/tewOdL8u3AzuA86rq34YTbyjG+TNG9/RQ4KvAW5P8U5I3JTkUmKmqPdDZgAPHtCgbwEuaXY7fMqrDaLqcxX98GWxDv3XrzgYj7requg14HXArsAf4VlV9hBb02wGyQTtebzcAP5Xkh5IcQmcPzhNoQd8dIBu0o+80ORZ+pnV7cjqH8/9VkkcNM9QCvbwn2/Q96pdZ+n+pAj7SfFffNMRM3Zb7DGlLX/4kcEdV3bTE/KH3ZZL1wOOAa2jx63JBzm4jf22OQ3Eoi0yrPpZpq56zJ/lpOsWhl69posHrpY1/DLy8qu4eQp5B66V964D/GTgDeDrwvyd52FoHG5Be2vd04HrgwcBjgTc0e0FMinH+jNE9raOzi/SfV9XjgLvo7G7cBktl+3PgR+m8t/bQ2Y17JJLcF3gW8O5RZVjKItlG3m/NF/szgRPpfD4emuQFw86xmANkG3m/AVTVTjq72F8JfJjO7v6t2CP1ANla0XeaDMt83n6SzqFmjwEuAN4/zGx9aMX3qCS/S+e9etESi5xSVY+nM4zHi5P81NDCdfTyGdKKvgSez4H3GhpqXyY5jM4RKC+rqm/3utoi09a0L5fK2ZbX5jgUh3bzH7/GQGdXq4W7PfeyTFv1lD3JjwFvAs6sqn8eUrZB6aWNs8A7k+wCfh74sySjPjyhV72+Rj9cVXdV1deAjwHjMrB4L+37JTqHzVVV3UxnHItHDCnfMIzzZ4zuaTewu6r2/1rzHjoFmTv2HyrYXI/i0M9Fs1XVHVV1d7M33hvp7AY9Ks8APllVdzT329Bv+90jW0v67anALVX11ar6AXApnXEE29Bvi2ZrSb8BUFVvrqrHV9VP0Tm04Sba0XeLZmtT32kiLPy8/XdV9e2q2tvc/hBwnyRHDztgo5f35Mi/RyXZCDwTOLuqFi0AVNXtzfWdwPsY8nu4x8+QNvTlOuB/Bd611DLD7Msk96FTcLmoqi5tJrfudblEzla9NsehOPSPwElJTmwq6GcBly9Y5nLgRel4Ep1do/cMO2iflm1fkh+h86XthVX1+RFkXK1l21hVJ1bV+qpaT+cfol+vqrb/CrJfL6/Ry4CfTLKu2QX9x+kcazoOemnfrXSOiyfJDPBw4ItDTbm2xvkzRl2q6ivAl5M8vJl0Kp3B4i8HNjbTNtJ5z7Yi24LxrZ5D55CWUVn4S+HI+63LPbK1pN9uBZ6U5JBmfIZT6Xz2t6HfFs3Wkn4DIMkxzfWP0PlH5GLa0XeLZmtT32kiLLlnRpIfbt63JHkinf/pRvXjcS/vyV6+S66ZJKfROfLiWVX1L0ssc2iSw/ffpjNQ8FDfwz1+hoy0LxtPBT5bVbsXmznMvmzeB28GdlbV67tmtep1uVTO1r02a41HvB7Ehc6x3J+nM5r47zbTfg34teZ2gD9t5u8AZkedecDtexPwDTqH7VwPXDvqzINu44JlL2SMzlbWa/uA/0rnn9Ab6OxKOPLcg2ofnUMSPtK8/24AXjDqzCts38V0dt/9AZ1fEc6dpM8YL/f6ez8WuBb4NJ1d8Y8Efgi4is6eCVcBR7Uo29ub192n6XxpOXZE2Q6h88/HA7umtaXfFsvWln77PeCzzWfj24H7tajfFsvWin5r8v1ds938FHBqy15zi2VrTd95Ge/LEp9p3d9LXgLc2Lz+rqaz198wci32fWnR9ySd74Yf6lr3Xt8lh5jxZjpjy+z/X+ovFmakM+7fp5rLjWuZ8QA5F/0MaVNfNtMvZMH/cKPqS+An6BwK9umuv+/pLXxdLpWzVa/NNE8oSZIkSZKkKTQOh5VJkiRJkiRpjVgckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkckiRJkiRJmmIWhyRJkiRJkqaYxSFJkiRJkqQpZnFIkiRJkiRpilkc0sRI8hNJ/j7Jt5J8Pcn/l+QJSc5JcneSvQsuDz7QeqNujyRpbSTZleT7SY5eMP36JJVkfZILm9vPWrDMHzfTz2nu3zfJ+Ul2N9uWW5L80YLn+u6C7c8bhtJQSdLIJfmLrs//7yf5Qdf9v2q2OZVkXZJXJPnYIo9xdLPuo0fRBk0Hi0OaCEkeAHwQuAA4CjgO+D3ge80i/1BVhy243N7DepKkyXQL8Pz9d5JsAA5esMzngY1dy6wDngt8oWuZVwCzwBOBw4GfBv5pweP83ILtz0sG1gpJUqtV1a/t//wH/i/gXV3bg2csWPztwFOSnLhg+lnAjqq6YRiZNZ0sDmlSPAygqi6uqrur6rtV9ZGq+vQarSdJGm9vB17UdX8j8LYFy3wAOCXJkc3904BPA1/pWuYJwPuq6vbq2FVVCx9HkjQFkjw4yXuTfLXZk/Q3VrJ+Ve0G/gZ44YJZLwK2DyqntBiLQ5oUnwfuTrI9yTO6vsiv1XqSpPF2NfCAJI9MchDwC8A7Fizzr8DldH6xhc6X84WFn6uB30ry60k2JMlahpYktVOS/0TnR4VP0Tka4VTgZUmevsKH2k5XcSjJw4HHAhcPKKq0KItDmghV9W3gJ4AC3gh8NcnlSWaaRZ6U5Jtdly/0uJ4kaXLt33voacBngdsWWeZtwIuSPBD4X4D3L5j/fwOvBc4GrgVuS7JxwTLvX7AN+i+DbIQkqRWeADyoqv6Pqvp+VX2Rzv8XZy2z3kLvA2aSPKW5/yLgr6rqqwPMKt2LxSFNjKraWVXnVNXxwKOBBwN/3My+uqqO6Lr8aI/rSZIm19uBXwTO4d57BAFQVR8HHgT8N+CDVfXdBfPvrqo/rapTgCOA1wBvSfLIrsWevWAb9MY1aIskabQeAjy4+8cA4JXAin50rqp/Ad5N54eJ0PnxwUPKtOYsDmkiVdVngQvpFHvWfD1J0vipqi/RGZj6dODSAyz6DmAzSxSQuh7vu1X1p8A3gJMHlVOSNBa+DNyy4MeAw6vq9D4eazvwPDp7th5O5wQ60pqyOKSJkOQRSTYnOb65fwKds9BcvRbrSZImxrnAz1TVXQdY5n/Q+YK+2OmFX5ZkLsnBzWmIN9L5Ir/wjGWSpMn2CeDbSV7ebBMOSvLoJE/o47H+DvgmsA14Z1V9f6BJpUVYHNKk+A7w48A1Se6iU9y5gc4vvQBPTrJ3weUJPawnSZpgVfWFqrp2mWW+XlVXVVUtMvu7wPl0zmD2NeDFwH9uxprY7wMLtj/vG1gDJEmtUFV3Az9HZ/DoW+hsE94EPLCPxyo6e6s+hGX2WpUGJYt/z5EkSZIkSdI0cM8hSZIkSZKkKWZxSJIkSZIkaYpZHJIkSZIkSZpiFockSZIkSZKm2LpRBwA4+uija/369Ste76677uLQQw8dfKA+tSmPWRbXpizQrjxmWVy/Wa677rqvVdWD1iCSltDvtmQl2vTaHKRJbRdMbtts13hxWzI+hrEtGaRJfc/0yvbbftu/fPt73Za0oji0fv16rr32gGeRXdT8/Dxzc3ODD9SnNuUxy+LalAXalccsi+s3S5IvDT6NDqTfbclKtOm1OUiT2i6Y3LbZrvHitmR8DGNbMkiT+p7ple23/bZ/btnlet2WeFiZJEmSJEnSFLM4JEmSJEmSNMUsDkmSJEmSJE0xi0OSJEmSJElTzOKQJEmSJEnSFLM4JEmSJEmSNMUsDkmSJEmSJE0xi0OSJEmSJElTzOKQJEmSJEnSFFs36gBavfVbrrjXtM0b9nHOgum7tp4xrEiSJElTYbHvYQtdeNqhQ0giaTV6eS+D/1NpcrnnkCRJkiRJ0hSzOCRJkiRJkjTFLA5JkiRJkiRNMYtDkiRJkiRJU8zikCRJkiRJ0hSzOCRJkiRJkjTFLA5JkiRJkiRNMYtDkiRJkiRJU8zikCRJkiRJ0hSzOCRJkiRJkjTFLA5JkiRJkiRNMYtDkiRJksZWkhOSfDTJziQ3Jjmvmf7qJLclub65nD7qrJLUVutGHUCSJEmSVmEfsLmqPpnkcOC6JFc28/6oql43wmySNBYsDkmSJEkaW1W1B9jT3P5Okp3AcaNNJUnjxcPKJEmSJE2EJOuBxwHXNJNekuTTSd6S5MiRBZOklnPPIUmSJEljL8lhwHuBl1XVt5P8OfD7QDXX5wO/vMh6m4BNADMzM8zPzw8t82rt3bt3rPIOWq/t33Hbt5ZdZvOG3p6zTf3t39/2D7L9FockSZIkjbUk96FTGLqoqi4FqKo7uua/EfjgYutW1TZgG8Ds7GzNzc2ted5BmZ+fZ5zyDlqv7T9nyxUDe85dZy//fMPi39/2D7L9HlYmSZIkaWwlCfBmYGdVvb5r+rFdiz0HuGHY2SRpXLjnkCRJkqRxdgrwQmBHkuubaa8Enp/ksXQOK9sF/Opo4klS+1kckiSNVJLfBH6Fzpf3HcAvAYcA7wLW0/lC/7yq+saIIkqSWqyqPg5kkVkfGnYWSRpXHlYmSRqZJMcBvwHMVtWjgYOAs4AtwFVVdRJwVXNfkiRJ0hqwOCRJGrV1wMFJ1tHZY+h24ExgezN/O/DsEWWTJEmSJt6qikNJfjPJjUluSHJxkvsnOSrJlUluaq6PHFRYSdJkqarbgNcBtwJ7gG9V1UeAmara0yyzBzhmdCklSZKkydb3mENdhwKcXFXfTXIJnUMBTqZzKMDWJFvoHArw8oGklSRNlOYHhDOBE4FvAu9O8oIVrL8J2AQwMzPD/Pz8WsT8d3v37l3z5xiFSW0XTG7bbFd7bN6wb9llxrFdkha3fssVyy6za+sZQ0giDdZqB6TefyjAD/iPQwFeAcw187cD81gckiQt7qnALVX1VYAklwJPAe5IcmxV7WlORXznYitX1TZgG8Ds7GzNzc2tadj5+XnW+jlGYVLb9f+zd//BmuV1feDfHxmikxmUmeBce4HYJoWuml4G98rizopXJ5gJ4zJQJRbsCN2BbBNKLDDthobULqSo3WqVgRhMERsh02xGdFbAmWXUZXbCE0ICQwAHe7DRIaQdZ2img/y8aHQvfPeP57Tcudzb/fR9ft7nvF5VTz3Pc57znPP+nnOee879nF/J8rZNuxbHoRH+Ubz5usv2XLsA6JddF4daaw9W1blTAf4sybtba++uqoedClBV254KMIm9vYu2F2ZeebbbY7Vy6dd3n9e0WqT5tEhZksXKI8v2FinLkro/yVOq6q9muC65NsmHknw5ycEkx7rn2+aWEAAAltw4p5WNdSrAJPb2LtrepXnl2W6P1ZEDG7np5MNn7+kb12aU6OEWaT4tUpZksfLIsr1FyrKMWmt3V9VvJPlIko0kv5vhuuHyJLdW1QszLCA9e34pAQBguY1zWtlYpwIAQJK01l6V5FVbOv95hkcRAQAAUzbO3cr+8lSAqqoMN+JPJbk9w1MAEqcCAAAAACy0ca455FQAAAAAgD1urLuVORUAAAAAYG8b91b2AAAAMLL929xQZ6vTx66fQRLgnHGuOQQAAADAHqc4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjl8w7AAAALJr9R++YdwQAmBlHDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI+5lT29cvLBL+TQCLemPX3s+hmkAQBgXFX1+CRvTfJtSb6a5Hhr7Rer6sokv55kf5LTSX6itfa5eeUEWGSOHAIAAPayjSRHWmvfneQpSX6qqr4nydEkd7XWnpDkru49ANvY00cOOQoEAAD6rbV2JsmZ7vWXqupUkscmuSHJWtfbiSSDJC+fQ0SAhefIIQAAYClU1f4kT0pyd5KVrnB0roB01fySASy2PX3kEAAAQJJU1eVJ3p7kZa21L1bVqN87nORwkqysrGQwGEwt46Str68vVN6TD35hpP6OHLhwP6O0a9T2HzmwceERTtCs5smizf9Z0/7Jtl9xCAAA2NOq6pEZFoZuaa29o+v8UFXta62dqap9Sc5u993W2vEkx5NkdXW1ra2tzSLyRAwGgyxS3lEu+TGq0zeuXbCfUds/yVyjGCX7JCza/J817Z9s+51WBgAA7Fk1PETozUlOtdZet+mj25Mc7F4fTHLbrLMB7BWOHAIAAPaya5I8L8nJqrqn6/bKJMeS3FpVL0xyf5JnzykfwMJTHAIAAPas1tr7kux0gaFrZ5kFYK9SHIIe2r/NeddHDmw87Hzs08eun2UkAAAA5sQ1hwAAAAB6THEIAAAAoMecVgYAAMBC2e4yCFttvSwCsHuOHAIAAADoMcUhAAAAgB5THAIAAADoMcUhAOaqqh5dVb9RVR+vqlNV9QNVdWVV3VlV93XPV8w7JwAALCvFIQDm7ReT/E5r7b9O8sQkp5IcTXJXa+0JSe7q3gMAAFMwVnHI3l4AxlFV35zkqUnenCSttb9orX0+yQ1JTnS9nUjyzPkkBACA5TfukUP29gIwjr+R5D8n+ZdV9btV9StVdVmSldbamSTpnq+aZ0gAAFhml+z2i5v29h5Khnt7k/xFVd2QZK3r7USSQZKXjxMSgKV1SZLvS/LTrbW7q+oXcxE7FarqcJLDSbKyspLBYDCVkOesr69PfRzzsKztSpa3bdo1fUcObExsWIvULgDYzq6LQ3n43t4nJvlwkpdmy97eqtp2b+8kNuhXLh1txT2rlfG8VvzbTYPtps28NkoWaYPIMjM0yjIzz3m2SMvMImVZUg8keaC1dnf3/jcyLA49VFX7uvXIviRnt/tya+14kuNJsrq62tbW1qYadjAYZNrjmIdlbVeyvG3Truk7dPSOiQ3r5usuW5h2AcB2xikOjbW3dxIb9G+45bbcdPLCTTh948UPezfmtUGz3cbLkQMbXzdtZjUdtlqkDT3LzNAoy8y8lpdksZaZRcqyjFprn66qP66q72qt/UGSa5P8fvc4mORY93zbHGMCAMBSG6c4NNbeXgDo/HSSW6rqryT5ZJK/l+E18W6tqhcmuT/Js+eYDwAAltqui0P29gIwCa21e5KsbvPRtbPOAgAAfTTOkUOJvb0AAAAAe9pYxSF7ewEAAAD2tm+YdwAAAAAA5kdxCAAAAKDHFIcAAAAAekxxCAAAAKDHFIcAAAAAekxxCAAAAKDHFIcAAAAAekxxCAAAAKDHFIcAAAAAekxxCAAAAKDHFIcAAAAAekxxCAAAAKDHFIcAAAAAekxxCAAA2NOq6i1Vdbaq7t3U7dVV9WBV3dM9nj7PjACLTHEIAADY625Oct023V/fWru6e/zWjDMB7BmKQwAAwJ7WWntvks/OOwfAXqU4BAAALKuXVNXvdaedXTHvMACL6pJ5BwAAAJiCNyZ5TZLWPd+U5AVbe6qqw0kOJ8nKykoGg8EMI45nfX19ofIeObAx0/GtXDr7cY5iVvNk0eb/rGn/ZNuvOAQAACyd1tpD515X1ZuSvGuH/o4nOZ4kq6urbW1tbSb5JmEwGGSR8h46esdMx3fkwEZuOrl4/9KevnFtJuNZtPk/a9o/2fY7rQwAAFg6VbVv09tnJbl3p34B+m7xyqwAAAAXoarelmQtyWOq6oEkr0qyVlVXZ3ha2ekkL5pbQIAFpzgEAADsaa21527T+c0zDwKwRzmtDAAAAKDHFIcAAAAAesxpZQAAADBD+0e8s9vpY9dPOQkMOXIIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcumXcAAAAAFtv+o3fMOwJjGmUenj52/QySsIgcOQQAAADQY4pDAAAAAD2mOAQAAADQY4pDAAAAAD2mOATA3FXVI6rqd6vqXd37K6vqzqq6r3u+Yt4ZAQBgWY1dHLJBD8AEvDTJqU3vjya5q7X2hCR3de8BAIApmMSRQzboAdi1qnpckuuT/MqmzjckOdG9PpHkmbPOBQAAfXHJvLPgMgAAIABJREFUOF/etEH/vyf5h13nG5Ksda9PJBkkefk44wFgqf3TJP8oyaM2dVtprZ1Jktbamaq6arsvVtXhJIeTZGVlJYPBYKpB19fXpz6OeVjWdiXL2zbtmr4jBzYmNqxFahcAbGes4lDG2KAHgKr6sSRnW2sfrqq1i/1+a+14kuNJsrq62tbWLnoQF2UwGGTa45iHZW1Xsrxt067pO3T0jokN6+brLluYdgHAdnZdHBp3g34Se3tXLh1tr86s9tTMa6/QdtNgu2kzrz1Wi7S3zDIzNMoyM895tkjLzCJlWVLXJHlGVT09yTcl+eaq+ldJHqqqfd1Ohn1Jzs41JQAALLFxjhwaa4N+Ent733DLbbnp5IWbcPrGix/2bsxrb9d2e7aOHNj4umkzq+mw1SLtBbTMDI2yzMxreUkWa5lZpCzLqLX2iiSvSJJuR8PPttZ+sqp+IcnBJMe659vmFhIAAJbcri9I3Vp7RWvtca21/Umek+Rft9Z+MsntGW7IJzboAdidY0meVlX3JXla9x4AAJiCca85tJ1jSW6tqhcmuT/Js6cwDgCWTGttkOFNDNJa+5Mk184zD7C89k/wekIAsAwmUhyyQQ8AAACwN+36tDIAAAAA9r5pnFYGAADAHuA0SyBx5BAAAABArykOAQAAAPSY4hAAAABAjykOAQAAAPSY4hAAALCnVdVbqupsVd27qduVVXVnVd3XPV8xz4wAi0xxCAAA2OtuTnLdlm5Hk9zVWntCkru69wBsQ3EIAADY01pr703y2S2db0hyont9IskzZxoKYA+5ZN4BAAAApmCltXYmSVprZ6rqqu16qqrDSQ4nycrKSgaDwewSjml9fX3svEcObEwmzBysXLqY+UeZJ6PmPt+wLnb+jzLON9xy28jDu5ADj/2WiQ1rO1vbf/LBL1zwO9PONEuT+P1vpjgEAAD0VmvteJLjSbK6utrW1tbmG+giDAaDjJv30NE7JhNmDo4c2MhNJxfvX9rTN65dsJ9Rp/v5hnWx83/W83qU6TCOre0fpX3TzjRLk/j9b+a0MgAAYBk9VFX7kqR7PjvnPAALS3EIAABYRrcnOdi9PphkcufLACwZxSEAAGBPq6q3JXl/ku+qqgeq6oVJjiV5WlXdl+Rp3XsAtrF4J2gCAABchNbac3f46NqZBgHYoxw5BAAAANBjikMAAAAAPea0MgAAAJiQ/RO8Zfz5hnXkwEYOHb0jp49dP7Hx0V+OHAIAAADoMcUhAAAAgB5zWhkAAEtjkqdzAEBfOHIIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwAAAAB6THEIAAAAoMcUhwCYm6p6fFW9p6pOVdXHquqlXfcrq+rOqrqve75i3lkBAGBZ7bo4ZIMegAnYSHKktfbdSZ6S5Keq6nuSHE1yV2vtCUnu6t4DAABTMM6RQzboARhLa+1Ma+0j3esvJTmV5LFJbkhyouvtRJJnzichAAAsv0t2+8XW2pkkZ7rXX6qqzRv0a11vJ5IMkrx8rJQALL2q2p/kSUnuTrLSrWfSWjtTVVft8J3DSQ4nycrKSgaDwVQzrq+vT30c87Cs7UqWt23atbMjBzYmE2aClnV+AbA8dl0c2mxeG/Qrl462ATCrlfG8VvzbTYPtps28NkoWaYPIMjM0yjIzz3m2SMvMImVZZlV1eZK3J3lZa+2LVTXS91prx5McT5LV1dW2trY2tYzJ8Hcx7XHMw7K2K1netmnXzg4dvWMyYSbo5usuW8r5BcDyGLs4NM8N+jfccltuOnnhJpy+8eKHvRvz2lDbbiPoyIGNr5s2s5oOWy3SBqxlZmiUZWZey0uyWMvMImVZVlX1yAzXI7e01t7RdX6oqvZ1Oxn2JTk7v4QAALDcxrpb2fk26LvPbdADsKMa7lF4c5JTrbXXbfro9iQHu9cHk9w262wAANAX49ytzAY9AOO6JsnzkvxIVd3TPZ6e5FiSp1XVfUme1r0HAACmYJzTys5t0J+sqnu6bq/McAP+1qp6YZL7kzx7vIgALKvW2vuS7HQ+8rWzzALAcqqq00m+lOQrSTZaa6vzTQSweMa5W5kNegAAYC/44dbaZ+YdAmBRjXXNIQAAAAD2toncyh4AAKZp/wLeop49oyV5d1W1JL/c3TX5L1XV4SSHk2RlZSWDwWD2CXdpfX39vHlPPviFCw7jyIEJBpqxlUuHd9ztq3PtH3WZnfW0mtRvaafleOXS4d2ozxllWd5Lv+8LudDv/2IpDgEAAMvsmtbap6rqqiR3VtXHW2vvPfdhVyw6niSrq6ttbW1tTjEv3mAwyPnyHlryouqRAxu56WR//6U91/7TN66N1P+sl4dRc13ITrl3M/8nlWkRXOj3f7GcVgYAACyt1tqnuuezSd6Z5MnzTQSweBSHAACApVRVl1XVo869TvKjSe6dbyqAxdPfY/AAAIBlt5LknVWVDP/3+dXW2u/MNxLA4lEcAgAAllJr7ZNJnjjvHACLzmllAAAAAD2mOAQAAADQY04rAwAAWBD7R7zd+Olj1085CXvFqMvMrI2Say8vx8vWPkcOAQAAAPSY4hAAAABAjykOAQAAAPSY4hAAAABAjykOAQAAAPSY4hAAAABAjykOAQAAAPTYJfMOAABAv+0/ekeS5MiBjRzqXsMy2j/B5Xv/0Tv8ZtjzJvmbYDyOHAIAAADoMcUhAAAAgB5THAIAAADoMcUhAAAAgB5zQWoAAB5mlAuEnj52/QySAACz4MghAAAAgB5THAIAAADoMaeVAQAsAaeCwfyM8vsD5m/U3+qk1pezHt84HDkEAAAA0GOKQwAAAAA9pjgEAAAA0GOuOQT01ijnAN983WUzSALsJfO4fsDWcR45sJFDu7jGieuiAADbceQQAAAAQI8pDgEAAAD0mNPKAACYCqexAcDeoDgEAAAAMCej7EyZ5LUMt+O0MgAAAIAeUxwCAAAA6DHFIQAAAIAec80hAKAXZn0+v4sxAwB7xdSOHKqq66rqD6rqE1V1dFrjAWB5WZcAMC7rEoALm8qRQ1X1iCT/PMnTkjyQ5D9U1e2ttd+fxvgAWD6zWpeMenTHrI8omfYdKZbJ+abnkQMbOeQIHugt/5cAjGZaRw49OcknWmufbK39RZJfS3LDlMYFwHKyLgFgXNYlACOo1trkB1r140mua639/e7985L8d621l2zq53CSw93b70ryB7sY1WOSfGbMuJO0SHlk2d4iZUkWK48s29ttlm9vrX3rpMP0yQzXJRdjkZbNSVrWdiXL2zbt2lusS+ZkQdclk7Ssv5lRab/2a/+FjbQumdYFqWubbg+rQrXWjic5PtZIqj7UWlsdZxiTtEh5ZNneImVJFiuPLNtbpCw9NJN1ycVY1uVhWduVLG/btGtvWdZ27RELty6ZpL4vW9qv/do/ufZP67SyB5I8ftP7xyX51JTGBcBysi4BYFzWJQAjmFZx6D8keUJVfUdV/ZUkz0ly+5TGBcBysi4BYFzWJQAjmMppZa21jap6SZL/J8kjkryltfaxKYxq0Q7/XKQ8smxvkbIki5VHlu0tUpZemeG65GIs6/KwrO1Klrdt2rW3LGu7Ft6Crksmqe/Llvb3m/ZP0FQuSA0AAADA3jCt08oAAAAA2AMUhwAAAAB6bE8Uh6rqLVV1tqru3eHzqqp/VlWfqKrfq6rvm2OWtar6QlXd0z3+tylmeXxVvaeqTlXVx6rqpdv0M5NpM2KWmUybqvqmqvpgVX20y/JPtulnVtNllCwzW2a68T2iqn63qt61zWcz+y2NkGXW0+V0VZ3sxvWhbT6f6bRh8VxoGdkrtluPVdWVVXVnVd3XPV8xz4y7sUO7Xl1VD276O/L0eWbcjZ3Wr3t9np2nXcswz7Zd9+/1ecbs7PD37Beq6uPdNsg7q+rRmz57Rbd98gdV9Xc2df9vu/XWJ7ptmJp1W3Zju/Zv+uxnq6pV1WM2detF+6vqp7s2fqyqfn5T96Vvf1VdXVUfOLcNVlVP3vTZ0rR/N+v8iba/tbbwjyRPTfJ9Se7d4fOnJ/ntJJXkKUnunmOWtSTvmtF02Zfk+7rXj0ryh0m+Zx7TZsQsM5k2XVsv714/MsndSZ4yp+kySpaZLTPd+P5hkl/dbpyz/C2NkGXW0+V0ksec5/OZThuPxXtcaBnZK4/t1mNJfj7J0e710SQ/N++cE2rXq5P87Lyzjdmubdeve32enaddyzDPtl337/V55jG7xw5/z340ySXd6587t/x0v5uPJvnGJN+R5D8meUT32QeT/EC3TP52kr8777bttv1d98dneGHxPzq3Pu5L+5P8cJL/N8k3du+v6ln7330uf4bb5INlbP/FrvMn3f49ceRQa+29ST57nl5uSPLWNvSBJI+uqn1zyjIzrbUzrbWPdK+/lORUksdu6W0m02bELDPRtXW9e/vI7rH1yuuzmi6jZJmZqnpckuuT/MoOvczstzRClkUzs2kD07TDeuyGJCe61yeSPHOmoSZgkdbPk3Se9euenmeLtN0waedZ9+/pecbsbPf3rLX27tbaRvf2A0ke172+Icmvtdb+vLX2n5J8IsmTu22Ub26tvb8N/1N8a/bIMneev+evT/KP8vBt6b60/8VJjrXW/rzr52zXvS/tb0m+uXv9LUk+1b1eqvbvYp0/0fbvieLQCB6b5I83vX8g893A+IHuUOLfrqrvncUIq2p/kidluHdqs5lPm/NkSWY0bWp4utI9Sc4mubO1NrfpMkKWZHbLzD/NcKX61R0+n+XycqEsyWx/Sy3Ju6vqw1V1eJvPF+3vDLN3oWVkL1tprZ1JhhsmSa6ac55Jekl3GsZb9vppPFvWr0szz7bZbtjz82yHdf/SzDPm7gUZHgmQ7Lx98tju9dbue1JVPSPJg621j275qBftT/KdSX6wqu6uqn9TVd/fde9L+1+W5Beq6o+TvDbJK7ruS9v+Edf5E23/shSHtjt/bl5HZ3wkybe31p6Y5A1JfnPaI6yqy5O8PcnLWmtf3PrxNl+Z2rS5QJaZTZvW2ldaa1dnuFflyVX1t7ZG3e5rc8oyk+lSVT+W5Gxr7cPn622bbhOfLiNmmfVv6ZrW2vcl+btJfqqqnrrl80X6O8N8XGgZYfG8McnfTHJ1kjNJbppvnN27wPp1z9qmXUsxz0ZY98OuVNU/TrKR5JZznbbprZ2n+55TVX81yT9Ost31J5e+/Z1LklyR4Smq/0uSW7tryPSl/S9O8jOttccn+Zkkb+66L2X7L2KdP9H2L0tx6IEMz0E953H52qFmM9Va++K5Q4lba7+V5JG16YJpk1ZVj8xwwbmltfaObXqZ2bS5UJZZT5tuPJ9PMkhy3ZaPZr7M7JRlhtPlmiTPqKrTSX4tyY9U1b/a0s+spssFs8x6eWmtfap7PpvknUmevKWXhfk7w3yMsIzsZQ+dO02yez57gf73hNbaQ90/6V9N8qbs0Xm2w/p1z8+z7dq1LPPsnC3r/j0/z5ivqjqY5MeS3NidKpLsvH3yQL526tnm7nvR38zweiof7bYdH5fkI1X1belH+5Nhe97Rnbb6wQyPvH9M+tP+g0nOrf/+r3xt3bB07b/Idf5E278sxaHbkzy/hp6S5AvnDruatar6tnNXAq/hVdS/IcmfTGlclWHV9FRr7XU79DaTaTNKlllNm6r61uru4FBVlyb520k+vqW3WU2XC2aZ1XRprb2itfa41tr+JM9J8q9baz+5pbeZTJdRssz4t3RZVT3q3OsML/q49Q4ZC/N3htkbcRnZy27PcMMr3fNtc8wyMfXw64I9K3twnp1n/bqn59lO7VqSebbTun9PzzPmq6quS/LyJM9orf3ppo9uT/KcqvrGqvqOJE9I8sFuG+VLVfWU7vf2/OzRZa61drK1dlVrbX+37fhAhhft/XR60P7Obyb5kSSpqu9M8leSfCb9af+nkvxQ9/pHktzXvV6q9u9inT/R9l8yoXZMVVW9LcM7Fz2mqh5I8qoML+6X1tq/SPJbGV61/BNJ/jTJ35tjlh9P8uKq2kjyZ0mes6myP2nXJHlekpM1PK89SV6Z5K9vyjOraTNKlllNm31JTlTVIzIsKNzaWntXVf2DTVlmNV1GyTLLZebrzGm6jJJlltNlJck7u1rUJUl+tbX2O4s0bZi7bZeR+UbanR3WY8cyPET9hUnuT/Ls+SXcnR3atVZVV2d4KPXpJC+aW8Dd22n9utfn2U7teu4SzLOd1v3vz96eZ8zIDn/PXpHhHYnu7NZFH2it/YPW2seq6tYkv5/h6WY/1Vr7SjeoFye5OcmlGV6j6LezB2zX/tbam7frty/tT/KWJG+p4e3d/yLJwW67uC/t/5+T/GJVXZLkvyQ5nCzl/L+odf6k218z/B8UAAAAgAWzLKeVAQAAALALikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjikMshar6g6r6iU3vr6mqtk239aq6pKoOVdVXuvfrVfXJqnpx199zq+p0VdWWcVxSVWer6sdm1zIAZq2qBlX1uar6xk3dHldVb6+qz1TVF6rqZFUd6j7b361z1jc9Pjq3BgAAXCTFIZbFe5P80Kb3T03y8W26/fvW2kb3/v2ttctba5cn+fEkP19VT0ryziSP3vLdJLkuSUvyO1PID8ACqKr9SX4ww7/3z9j00f+Z5I+TfHuSv5bk+Uke2vL1R59br7TWnjj9tAAAk6E4xJ7SHdHzs1X1e92e21+vqm/KsDj01E29/mCSn9um23u3G25r7SNJTiX57tbaf0lya4Yb/ps9P8ktm4pLACyf5yf5QJKbkxzc1P37k9zcWvtya22jtfa7rbXfnkdAAIBJUxxiL/qJDI/i+Y4k/02SQ0n+TZLvraorq+obkqwm+fUkj97U7b/PDsWhqvr+JN+Z5ENdpxNJfryqLu0+/5Yk/2OSt06rUQAshOcnuaV7/J2qWum6fyDJP6+q51TVX59bOgCAKVAcYi/6Z621T7XWPpvk/05ydWvt/iT3Z3h00BOT3Nda+7Mk/25Tt29Kcvem4Tylqj5fVetJPpjhKQP3JUlr7d9leLrAs7p+fyLJH7bW7pl66wCYi6r6HzI8bezW1tqHk/zHJP9T9/Gzk/zbJP9rkv9UVfd0OxY2+0y3Xvl8Vf3szIIDAIxJcYi96NObXv9pksu71+dOLXtqhhvwSfK+Td3ubq39+abvfqC19ujumkPfluR7k/wfmz5/a752atnzMjyaCIDldTDJu1trn+ne/2rXLa21z7XWjrbWvjfJSpJ7kvzmlpsXPKZbrzy6tfbamSYHABiD4hDL5Fxx6AfzteLQv93UbdtTypKktfZQkrdneOrYOW9Ncm1V/UCSp2T4TwIAS6g7jfgnkvxQVX26qj6d5GeSPLGqHnZx6a549Nok/1WSK2ceFgBgwi6ZdwCYoPcm+RdJ9if5+123kxlem+hvJPnlnb5YVX8tw1PIPnauW2vtj6rqfUneluTO1tqnd/o+AHveM5N8JcmBJH+xqfutSZ5fVRsZnn788SSXJnlxkk+01v6kqh4167AAAJPkyCGWRmvtD5OcTXKmtfb5rttXM7ye0Dcn+fdbvvIDVbXeXXPoVJL/nOSnt/RzIsPrT7gQNcByO5jkX7bW7m+tffrcI8kvJbkxw/XIO5N8PsknM1w3PGPHoQEA7CHVWpt3BgAAAADmxJFDAAAAAD2mOAQAAADQY4pDAAAAAD2mOAQAAADQYwtxK/vHPOYxbf/+/VMZ9pe//OVcdtllUxn2bi1apkXLkyxepkXLkyxepkXLk8w304c//OHPtNa+dS4j76lprEsWcbneTL7xyDce+cYzSj7rEgBmZSGKQ/v378+HPvShqQx7MBhkbW1tKsPerUXLtGh5ksXLtGh5ksXLtGh5kvlmqqo/msuIe2wa65JFXK43k2888o1HvvGMks+6BIBZcVoZAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI9dMu8AMCn7j95xwX5OH7t+BkkAmKVR/v4n1gEAADtx5BAAAABAjykOAQAAAPSY4hAAAABAjykOAQAAAPSY4hAAAABAjykOAQAAAPSY4hAAAABAjykOAQAAAPSY4hAAAABAjykOATA3VfVNVfXBqvpoVX2sqv5J1/3Kqrqzqu7rnq+Yd1YAAFhWikMAzNOfJ/mR1toTk1yd5LqqekqSo0nuaq09Icld3XsAAGAKFIcAmJs2tN69fWT3aEluSHKi634iyTPnEA8AAHph18Whqnp8Vb2nqk51pwK8tOv+6qp6sKru6R5Pn1xcAJZNVT2iqu5JcjbJna21u5OstNbOJEn3fNU8MwIAwDK7ZIzvbiQ50lr7SFU9KsmHq+rO7rPXt9ZeO348AJZda+0rSa6uqkcneWdV/a1Rv1tVh5McTpKVlZUMBoOJZltfX5/4MCdJvqEjBzZG6m9rFtNvPPKNZ9HzAdAvuy4OdXtyz+3V/VJVnUry2EkFA6BfWmufr6pBkuuSPFRV+1prZ6pqX4ZHFW33neNJjifJ6upqW1tbm2imwWCQSQ9zkuQbOnT0jpH6O33j2sPem37jkW88i54PgH4Z58ihv1RV+5M8KcndSa5J8pKqen6SD2V4dNHntvnOVPf2nrOIe2UWLdOi5Ul2l2mUPce7beeyTKNpWrQ8yWJm4uGq6luT/H9dYejSJH87yc8luT3JwSTHuufb5pcSAACW29jFoaq6PMnbk7ystfbFqnpjktdkeEHR1yS5KckLtn5v2nt7z1nEvTKLlmnR8iS7yzTKnuOte42nmWfaFi3TouVJFjMTX2dfkhNV9YgMr4N3a2vtXVX1/iS3VtULk9yf5NnzDAkAAMtsrOJQVT0yw8LQLa21dyRJa+2hTZ+/Kcm7xkoIwNJqrf1ehkeebu3+J0munX0iAADon3HuVlZJ3pzkVGvtdZu679vU27OS3Lv7eAAAAABM0zhHDl2T5HlJTna3IE6SVyZ5blVdneFpZaeTvGishAAAAABMzTh3K3tfktrmo9/afRwAAAAAZmnXp5UBAAAAsPcpDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAHNTVY+vqvdU1amq+lhVvbTr/uqqerCq7ukeT593VgAAWFaXzDsAAL22keRIa+0jVfWoJB+uqju7z17fWnvtHLMBAEAvKA4BMDettTNJznSvv1RVp5I8dr6pAACgXxSHAFgIVbU/yZOS3J3kmiQvqarnJ/lQhkcXfW6b7xxOcjhJVlZWMhgMJpppfX194sOcJPmGjhzYGKm/rVlMv/HIN55FzwdAvygOATB3VXV5krcneVlr7YtV9cYkr0nSuuebkrxg6/daa8eTHE+S1dXVtra2NtFcg8Egkx7mJMk3dOjoHSP1d/rGtYe9N/3GI994Fj0fAP3igtQAzFVVPTLDwtAtrbV3JElr7aHW2ldaa19N8qYkT55nRgAAWGaKQwDMTVVVkjcnOdVae92m7vs29fasJPfOOhsAAPSF08oAmKdrkjwvycmquqfr9sokz62qqzM8rex0khfNJx4AACw/xSEA5qa19r4ktc1HvzXrLAAA0Fe7Pq2sqh5fVe+pqlNV9bGqemnX/cqqurOq7uuer5hcXAAAAAAmaZwjhzYyvLXwR6rqUUk+XFV3JjmU5K7W2rGqOprkaJKXjx8VAGC69o9w57PTx66fQRIAgNnZ9ZFDrbUzrbWPdK+/lORUkscmuSHJia63E0meOW5IAAAAAKZjItccqqr9SZ6U5O4kK621M8mwgFRVV+3wncNJDifJyspKBoPBJKJ8nfX19akNe7fmlenkg1/YtvvKpckbbrktSXLgsd8yy0g72jqNdsq+2ZEDFx7ubqe75ejCFi1PspiZAAAAFs3YxaGqujzJ25O8rLX2xeFdiS+stXY8yfEkWV1dbWtra+NG2dZgMMi0hr1b88p0aIdD5Y8c2MhNJ4eLwukb12aYaGdbp9FO2S/WbttnObqwRcuTLGYmAACARbPr08qSpKoemWFh6JbW2ju6zg9V1b7u831Jzo4XEQAAAIBpGeduZZXkzUlOtdZet+mj25Mc7F4fTHLb7uMBAAAAME3jnFZ2TZLnJTlZVfd03V6Z5FiSW6vqhUnuT/Ls8SICAAAAMC27Lg611t6XZKcLDF272+ECAAAAMDtjXXMIAAAAgL1NcQgAAACgxxSHAAAAAHpMcQgAAACgxxSHAAAAAHpMcQgAAACgxxSHAAAAAHpMcQgAAACgxxSHAAAAAHpMcQgAAACgxxSHAAAAAHpMcQgAAACgxxSHAAAAAHpR/VokAAAWbElEQVRMcQgAAACgxxSHAAAAAHpMcQgAAACgxxSHAJibqnp8Vb2nqk5V1ceq6qVd9yur6s6quq97vmLeWQEAYFkpDgEwTxtJjrTWvjvJU5L8VFV9T5KjSe5qrT0hyV3dewAAYAoumXcA+m3/0Tu27X7kwEYO7fDZLGzNtV2e08eun2UkWEqttTNJznSvv1RVp5I8NskNSda63k4kGSR5+RwiAgDA0lMcAmAhVNX+JE9KcneSla5wlNbamaq6aofvHE5yOElWVlYyGAwmmml9fX3iw5wk+YaOHNgYqb+tWbbLN8qwZjXNzd/xyAcAo1McAmDuquryJG9P8rLW2heraqTvtdaOJzmeJKurq21tbW2iuQaDQSY9zEmSb2jUI01P37j2sPfb5RtlWFuHMy3m73jkA4DRueYQAHNVVY/MsDB0S2vtHV3nh6pqX/f5viRn55UPAACWneIQAHNTw0OE3pzkVGvtdZs+uj3Jwe71wSS3zTobAAD0hdPKAJina5I8L8nJqrqn6/bKJMeS3FpVL0xyf5JnzykfAAAsPcUhAOamtfa+JDtdYOjaWWYBAIC+cloZAAAAQI85coiLtn/Eu8Isu1Gnw+lj1085CQCj2Pp3+8iBjZHvdAYAsMwcOQQAAADQY4pDAAAAAD2mOAQAAADQY4pDAAAAAD02VnGoqt5SVWer6t5N3V5dVQ9W1T3d4+njxwQAAABgGsa9W9nNSX4pyVu3dH99a+21Yw4bAGCpne/Ol5vvpubOlwDANI115FBr7b1JPjuhLAAAAADM2LhHDu3kJVX1/CQfSnKktfa5rT1U1eEkh5NkZWUlg8FgKkHW19enNuzdmlemIwc2tu2+cunXPhsl107DmaTNmSZp1Om+ddzj5OnLsr1oeZLFzAQAALBoplEcemOS1yRp3fNNSV6wtafW2vEkx5NkdXW1ra2tTSHK8B/zaQ17t+aV6dAOh64fObCRm04OF4XTN67tejiTtDnTJI3SvuTr2zhOnlHHebEWbdletDzJYmYCAABYNBO/W1lr7aHW2ldaa19N8qYkT570OAAAAACYjIkXh6pq36a3z0py7079AgAAADBfY523U1VvS7KW5DFV9UCSVyVZq6qrMzyt7HSSF42ZEQAAAIApGas41Fp77jad3zzOMAGA5Xe+W7hvtoi3cB81+6zHuYjTCgDYGyZ+WhkAAAAAe4fiEAAAAECPTeNW9szYJA9vn8eh8jhdAAAAgPlx5BAAAABAjykOAQAAAPSY4hAAAABAj7nmEACwp28tDwDAeBw5BAAAANBjikMAAAAAPaY4BMBcVdVbqupsVd27qdurq+rBqrqnezx9nhkBAGCZuebQnIx6bQeAHrg5yS8leeuW7q9vrb129nEAAKBfHDkEwFy11t6b5LPzzgEAAH2lOATAonpJVf1ed9rZFfMOAwAAy8ppZQAsojcmeU2S1j3flOQFW3uqqsNJDifJyspKBoPBREOsr69PfJiTNGq+kw9+4YL9HDkw2jgvZnqcL9+RAxsTG9+ow9pq5dLdf3cWLjbfrJfVZfl9zMui5wOgXxSHAFg4rbWHzr2uqjcledcO/R1PcjxJVldX29ra2kRzDAaDTHqYkzRqvkMTvM7d6RsvPL5zzpdv1EyjjG+37TtyYCM3nVzcTaGLzXcx82YSluX3MS+Lng+AfnFaGQALp6r2bXr7rCT37tQvAAAwnsXdXQZAL1TV25KsJXlMVT2Q5FVJ1qrq6gxPKzud5EVzCwgAAEtOcQiAuWqtPXebzm+eeRAAAOgpxSGYsv0TvNYHAAAATJprDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD02CXzDgAAwPj2H73jgv2cPnb9DJIAAHuNI4cAAAAAekxxCAAAAKDHFIcAAAAAekxxCAAAAKDHxioOVdVbqupsVd27qduVVXVnVd3XPV8xfkwAAAAApmHcI4duTnLdlm5Hk9zVWntCkru69wAAAAAsoLFuZd9ae29V7d/S+YYka93rE0kGSV4+zngAgH4a5fbsAACMZ6zi0A5WWmtnkqS1dqaqrtqup6o6nORwkqysrGQwGEwhSrK+vj61Ye/W+vp6jhz4yrxj/KWVS5MjBzbmHeNhppVp1GVh67gXYRptzb5oy/ai5UkWMxMAAMCimUZxaCStteNJjifJ6upqW1tbm8p4BoNBpjXs3RoMBrnpfV+ed4y/dOTARm46ObdFYVvTynT6xrWR+ju0ZU/1IkyjrdkXbdletDzJYmYCAABYNNO4W9lDVbUvSbrns1MYBwAAAAATMI3i0O1JDnavDya5bQrjAAAAAGACxr2V/duSvD/Jd1XVA1X1wiTHkjytqu5L8rTuPQAAAAALaNy7lT13h4+uHWe4AAAAAMzGYl2FGAB6YJTbs58+dv0MkgAAwHSuOQQAAADAHuHIIXpllL31i2pr9iMHNnJom/Y42gAAAICL4cghAOaqqt5SVWer6t5N3a6sqjur6r7u+Yp5ZgQAgGWmOATAvN2c5Lot3Y4muau19oQkd3XvAQCAKVAcAmCuWmvvTfLZLZ1vSHKie30iyTNnGgoAAHrENYcAWEQrrbUzSdJaO1NVV23XU1UdTnI4SVZWVjIYDCYaYn19feLDTIbXDLuQUcY7ar5Rxjeqi5ke58s3yUy7tXLpYuTYyTTyTXJ5ntbvY1LkA4DRKQ4BsGe11o4nOZ4kq6urbW1tbaLDHwwGmfQwk2x7MfmtTt944fGOmm+U8Y1qlFznnC/fJDPt1pEDG7np5OJuCk0j38XMvwuZ1u9jUuQDgNE5rQyARfRQVe1Lku757JzzAADA0lIcAmAR3Z7kYPf6YJLb5pgFAACWmuIQAHNVVW9L8v4k31VVD1TVC5McS/K0qrovydO69wAAwBQs7on2APRCa+25O3x07UyDAABATzlyCAAAAKDHHDkEANAT+yd4l7ibr7tsYsMCAObLkUMAAAAAPaY4BAAAANBjikMAAAAAPaY4BAAAANBjLkg9BRe62OORAxsx6ZmWSV1s9PSx6ycyHAAAABabI4cAAAAAeszhKwDARJ07gvHIgY0cmuCt0wEAmA5HDgEAAAD0mOIQAAAAQI8pDgEAAAD0mOIQAAAAQI8pDgEAAAD0mLuVdfaPeDeV08eun3ISWAx+EwAAAP2gOAQAC2iUAu3N1102gyQAACw7p5UBAAAA9JjiEAAAAECPKQ4BAAAA9NjUrjlUVaeTfCnJV5JstNZWpzUuAAAAAHZn2hek/uHW2memPA4AAAAAdsndygCAkY1yFzUAAPaWaRaHWpJ3V1VL8sutteObP6yqw0kOJ8nKykoGg8FUQqyvr4807CMHNkYa3iSGtXLp6OObhUXLkyxepkXLkyxOpnO/ifP91k4++IWRhnXgsd8yoVRDo/7+AQAA+myaxaFrWmufqqqrktxZVR9vrb333Iddseh4kqyurra1tbWphBgMBhll2IdG3BN6+sbxh3XkwEZuOrk4B20tWp5k8TItWp5kcTKd+02c77c2yd/XxRj19w8AANBnU7tbWWvtU93z2STvTPLkaY0LAAAAgN2ZSnGoqi6rqkede53kR5PcO41xAbC8qup0VZ2sqnuq6kPzzgMAAMtoWuekrCR5Z1WdG8evttZ+Z0rjAmC5ufMlAABM0VSKQ621TyZ54jSGDQAAAMDkzP9qtgCws7ne+XLzHe9GueveqHfcm9SdBs9+9gt5wy23jTC+iYzuoi3KXRV3It94Fv2OkPIBwOgUhwBYZHO98+XmO96Ncte9Ue+4N+od/P7/9u4/2LayruP4+zNc+CNEwVA0QC6agpRChKhZRtOUFxm7YbcJa8AIh37RyIw2MM6kzjjN3GxqmrJyzBh1RmX6AUWJaKMVM5kGEXChC3bFmyEEYzaQ1qQXvv6x1pHt5pyz97n7rB/n7PdrZs3Ze/383Oc+56y1n/08a80ylqcWrsV8ixl7vvftOnrUT4Qc+xMrx55PkrRcOntamSRJi/LJl5IkSVL3bBySJI2ST76UJEmS+jHevsqSpGXnky8lSZKkHtg4JEkaJZ98KUmSJPXDYWWSJEmSJElLzJ5DkiRJ2rB9X3xk5pP3Du69oKc0kiRpEfYckiRJkiRJWmI2DkmSJEmSJC0xh5Vt0M4Z3aclSZIkSZK2EnsOSZIkSZIkLTEbhyRJkiRJkpaYjUOSJEmSJElLzHsOSZIkaVDz3NPx4N4LNrSvN73oED+7wL0i5z2eJEnbgT2HJEmSJEmSlpiNQ5IkSZIkSUvMxiFJkiRJkqQltqXvOTTP+PQ3vegQ53UfRVpam3Vvh8l9Lcr7REiSJEnS/Ow5JEmSJEmStMS2dM8hSZIWtV6PtY32iNus3m/SduHvhCRJW4M9hyRJkiRJkpaYjUOSJEmSJElLzMYhSZIkSZKkJWbjkCRJkiRJ0hKzcUiSJEmSJGmJ+bQySdvOytNxNvqkqdUc3HvBZkSSJEmSpNGycUiSJEmasnPBLxcm+UWDJGnsHFYmSZIkSZK0xGwckiRJkiRJWmI2DkmSJEmSJC2xzhqHkuxKcm+SA0mu7uo4kqTty3OJJEmS1L1OGoeSHAH8PnA+cAbwuiRndHEsSdL25LlEkiRJ6kdXPYfOBQ5U1X1V9TXgWmB3R8eSJG1PnkskSZKkHqSqNn+nyR5gV1W9oX1/MfDSqrpiYp3Lgcvbt6cB9256kMbxwJc62vfhGlumseWB8WUaWx4YX6ax5YFhM51SVc8Y6NjbwkjOJWOs15PMtxjzLcZ8i5knn+cSSVIvdnS036wy71taoarqPcB7Ojr+E0GSW6vqnK6PsxFjyzS2PDC+TGPLA+PLNLY8MM5M2pDBzyVjr0PmW4z5FmO+xYw9nyRpuXQ1rOx+4OSJ9ycBD3R0LEnS9uS5RJIkSepBV41DtwDPT3JqkqOAi4AbOjqWJGl78lwiSZIk9aCTYWVVdSjJFcDHgCOAa6rq7i6ONYfOh64dhrFlGlseGF+mseWB8WUaWx4YZybNaSTnkrHXIfMtxnyLMd9ixp5PkrREOrkhtSRJkiRJkraGroaVSZIkSZIkaQuwcUiSJEmSJGmJbanGoSS7ktyb5ECSq9dY57wktye5O8nfT8w/mGRfu+zWiflPT/I3Sf6t/XlcH5mSnNbOW5keTXJlu+ztSb44sezVm5Unya9O7PeuJI8lefp623ZdRmtlSnJykr9Nsr8tuzdObDNUGQ1Sj9Ypo6Hq0dOS/FWSO9r/m0tnbdtDGa2aqat6pO1ljvp1XJLrk9yZ5J+SfHeP2a5J8nCSu9ZYniS/22a/M8nZfWWbM9/pSf4xyf8neXOf2ebM9zNtud2Z5FNJzhxZvt1tttuT3Jrk+/vMN0/GifVe0p6f9vSVrT3urDI8L8kjE3/r3zqmfBMZn3T9KklSb6pqS0w0NyP9HPBc4CjgDuCMqXWOBf4VeE77/pkTyw4Cx6+y33cCV7evrwZ+o69MU/v5T+CU9v3bgTd3UUZT678G+OSsbbsuo3UyPRs4u319DPDZiUy9l9GQ9Wi9TEPUI+AtK/9G4BnAl9t1B6tH62Ta9HrktL2mOevXbwJva1+fDnyix3yvBM4G7lpj+auBjwIBXgZ8pufym5XvmcBLgF8f4vdtjnzfBxzXvj5/hOX3FJ64R+SLgXvGVobtOkcAnwRuBPaMKR9wHvDXfZfbBvLNvFZ0cnJycnLqetpKPYfOBQ5U1X1V9TXgWmD31Do/DVxXVV8AqKqH59jvbuD97ev3Az8+QKYfBj5XVf++gWMfbp5JrwM+PMe2XZfRqpmq6sGquq19/T/AfuDEDRx7U/PMMEgZTemzHhVwTJLQfHD5MnBoxrZdl9GqmTqqR9pe5qlfZwCfAKiqe4CdSU7oI1xV3UxTn9eyG/hANT4NHJvk2X1kg9n5qurhqroF+HpfmaaOPyvfp6rqv9u3nwZO6iXYE8efle8rVbXy9JCjaf7W9WqOOgjwK8CfA/Nce22qOfMNZo58h3P9KknSptpKjUMnAv8x8f5+nvwB7wXAcUn+Lsk/J7lkYlkBH2/nXz4x/4SqehCaxgiabzj7yrTiIp78Yf+Kthv5NRsYfjNPHgCSfBuwi+ZCbta2XZfRWpkml+0Evgf4zMTsvssIhqtH62Va0Wc9ehfwQuABYB/wxqp6fMa2XZfRWpm+aRPrkbaXeerXHcBrAZKcC5xCz40I65j7b4hmuoymF9aoJLkwyT3AR4CfGzrPtCQnAhcC7x46yzpe3g47/miS7xo6zJR5rhUlSerUVmocyirzpr892wF8L3AB8Crg15K8oF32iqo6m6bL+C8neeUIMpHkKODHgD+d2OYPgecBZwEPAr+1iXlWvAb4h6pa+SZrI9tuxCKZmh0kT6FpDLmyqh5tZw9RRjBcPVov0xD16FXA7cB3tPt/V5Knzrnt4VgkU7ODza1H2l7mqV97aT683U7TQ+JfaHrLjUFXv3dLJckP0TQOXTV0lmlVdX1VnU7T4/IdQ+dZxe8AV1XVY0MHWcNtNEOuzwR+D/iLgfNMW/daUZKkPmylxqH7gZMn3p9E00Ngep2bquqrVfUl4GbgTICqeqD9+TBwPc0wAoCHVrrftz830pV3oUyt84HbquqhlRlV9VBVPdb2evijiaybkWfFdC+T9bbtuozWykSSI2k+0H+wqq5bmT9QGQ1Zj9bM1Oq7Hl1K0wW+quoA8Hma+7AMWY/WytRFPdL2MrN+VdWjVXVpVZ0FXEJzX6vP9xdxXRv5G6JVJHkx8F5gd1X919B51tIOT3pekuOHzjLlHODaJAeBPcAfJNnI0OFOtb+/X2lf3wgcObIynHWtKElS57ZS49AtwPOTnNr2krgIuGFqnb8EfiDJjnb4zUuB/UmOTnIMQJKjgR8FVp4YcQPw+vb169t9dJ5pYvmT7h8zda+ICyeybkYekjwN+EG+9d+63rZdl9Gqmdp7x/wxsL+qfntq/d7LaOB6tNb/24q+69EXaO5xRHvfldOA+2Zs23UZrZqpo3qk7WVm/UpybLsM4A3AzRM90IZ2A3BJGi8DHlkZwqnZkjwHuA64uKo+O3SeaUm+s/07Rpon0R0FjKoBq6pOraqdVbUT+DPgl6pqNL1zkjxrogzPpbn+HVMZzrpWlCSpczuGDjCvqjqU5ArgYzRPxLimqu5O8gvt8ndX1f4kNwF3Ao8D762qu5I8F7i+vS7YAXyoqm5qd70X+JMkl9F8uPzJPjLBN+8f8yPAz0/t+p1JzqIZFnBwleWHnadd9ULg41X11Vnbtos7LaO1MgGvAC4G9rVDOQDe0n7r13sZAScwUD1aJ9NQ9egdwPuS7KMZ0nJV+20nA9ajVTOleezzptYjbS9z1q8XAh9I8hjNU4Uu6ytfkg/TPG3p+CT3A28DjpzIdiPNE8sOAP9L04uuN7PyJXkWcCvwVODxJFfSPA2ul8a1OcrvrcC30/R2geZG9uf0kW3OfD9B0/j3deD/gJ+qql6HDc6RcVBz5NsD/GKSQzRleFGfZTgr33rXipIk9SU9X19IkiRJkiRpRLbSsDJJkiRJkiRtMhuHJEmSJEmSlpiNQ5IkSZIkSUvMxiFJkiRJkqQlZuOQJEmSJEnSErNxSJIkSZIkaYnZOCRJkiRJkrTEvgG8MnMfLMthpwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "