Skip to content

Latest commit

 

History

History
61 lines (48 loc) · 4.15 KB

File metadata and controls

61 lines (48 loc) · 4.15 KB

OpenVINO Real-time version of 'Noise Suppression Demo'

Description:

Intel OpenVINO Toolkit 2021.4 introduced a new deep-learning based audio noise suppression demo. The demo takes an audio input file and produce a noise-suppressed output audio file. The input audio file must meet specific audio file format (WAV, 16KHz, Mono or 2ch).
I modified the demo program to make it possible to process real-time audio stream. Now you can use a microphone as input and check noise-supprssed audio with a headphone. The demo program can enable / disable noise suppression function so that you can check the effect immediately.
The program will record both input and output (processed) audio into '.wav' files when you specify '--audio_log' option. You can check the result later. The file name of those audio log file is auto generated from date and time.
This program processes 2,048 chunks (samples) of audio data in one inference. This means, program have to complete one iteration within 128ms (2,048 * 16KHz) including recording, playback and inference. You may need a high performance PC to achieve real-time processing.

Intel OpenVINO Toolkit 2021.4にディープラーニングベースのオーディオノイズサプレッションデモプログラムが追加されました。このデモプログラムはオーディオファイルを入力とし、ノイズ抑制したオーディオファイルを出力します。入力オーディオファイルは特定のフォーマットである必要があります(WAV, 16KHz, 1ch or 2ch)。
今回、このデモプログラムを改造し、リアルタイムに音声ストリームを処理できるようにしました。マイクを使って音声を入力し、ヘッドフォンでノイズ抑制効果を確認できます。簡単に効果の確認ができるようにノイズ抑制をON/OFFすることも可能です。
'--audio_log'オプションを指定すると、プログラムは入力と出力の音声を'.wav'ファイルに記録します。後で結果を聞き直すことが可能です。ファイル名は日付、時刻から自動生成されます。
プログラムは2,048-chunk (samples)単位でオーディオデータを処理しています。なので、リアルタイム処理を行うには1サイクルを128ms(2,048 * 16KHz)以内に完了する必要があります。それなりに速いPCをご用意ください。


Prerequisites:

  • OpenVINO 2021.4
  • Python 3.x
  • Python modues : pyaudio, opencv-python, numpy

How to run:

  1. Install OpenVINO
    Follow the 'Get Started Guide' instruction to install and setup OpenVINO 2021.4.

  2. Install Python prerequisites

python3 -m pip install -r requirements.in
  1. Obtain noise-suppression model from OMZ (OpenVINO Open Model Zoo)
    Use model downloader in OpenVINO to download the noise-suppressioin-poconetlike-0001 model.
(Linux) python3 $INTEL_OPENVINO_DIR/deployment_tools/open_model_zoo/tools/downloader/downloader.py --name noise-suppression-poconetlike-0001
(Win10) python "%INTEL_OPENVINO_DIR%\deployment_tools\open_model_zoo\tools\downloader\downloader.py" --name noise-suppression-poconetlike-0001
  1. Setup audio device
    Connect a microphone and a headphone. Setup audio configuration of your computer.

  2. Run demo program

python3 noise_suppression_demo-rt.py -m ./intel/noise-suppression-poconetlike-0001/FP16/noise-suppression-poconetlike-0001.xml -d CPU
options description
-m model file name (noise-suppression-poconetlike-0001 is the only supported model)
-d device to run inference. CPU, GPU, MYRIAD, ...
--audio_log enable audio logging. record input and output audio to '.wav' files
  • noise_suppression_demo-rt-mt.py is a multi-threaded version of the same demo. Audio recording and playback portion are run in isolated threads from the main inference thread.

Remarks:

This program opens a small dummy window using OpenCV. The reason is to use cv2.waitKey() to read real-time key input. No other reason exists :-).


Disclaimer:

Provided as-is.