-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
257 lines (219 loc) · 12 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# This code is based on https://github.com/openai/guided-diffusion
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
from utils.fixseed import fixseed
import os
import numpy as np
import torch
from utils.parser_util import generate_args
from utils.model_util import create_model_and_diffusion, load_model_wo_clip
from utils import dist_util
from model.cfg_sampler import ClassifierFreeSampleModel
from data_loaders.get_data import get_dataset_loader
from data_loaders.humanml.scripts.motion_process import recover_from_ric
import data_loaders.humanml.utils.paramUtil as paramUtil
from data_loaders.humanml.utils.plot_script import plot_3d_motion
import shutil
from data_loaders.tensors import collate
def main():
args = generate_args()
fixseed(args.seed)
out_path = args.output_dir
name = os.path.basename(os.path.dirname(args.model_path))
niter = os.path.basename(args.model_path).replace('model', '').replace('.pt', '')
max_frames = 196 if args.dataset in ['kit', 'humanml'] else 60
fps = 12.5 if args.dataset == 'kit' else 20
n_frames = min(max_frames, int(args.motion_length*fps))
is_using_data = not any([args.input_text, args.text_prompt, args.action_file, args.action_name])
dist_util.setup_dist(args.device)
if out_path == '':
out_path = os.path.join(os.path.dirname(args.model_path),
'samples_{}_{}_seed{}'.format(name, niter, args.seed))
if args.text_prompt != '':
out_path += '_' + args.text_prompt.replace(' ', '_').replace('.', '')
elif args.input_text != '':
out_path += '_' + os.path.basename(args.input_text).replace('.txt', '').replace(' ', '_').replace('.', '')
# this block must be called BEFORE the dataset is loaded
if args.text_prompt != '':
texts = [args.text_prompt]
args.num_samples = 1
elif args.input_text != '':
assert os.path.exists(args.input_text)
with open(args.input_text, 'r') as fr:
texts = fr.readlines()
texts = [s.replace('\n', '') for s in texts]
args.num_samples = len(texts)
elif args.action_name:
action_text = [args.action_name]
args.num_samples = 1
elif args.action_file != '':
assert os.path.exists(args.action_file)
with open(args.action_file, 'r') as fr:
action_text = fr.readlines()
action_text = [s.replace('\n', '') for s in action_text]
args.num_samples = len(action_text)
assert args.num_samples <= args.batch_size, \
f'Please either increase batch_size({args.batch_size}) or reduce num_samples({args.num_samples})'
# So why do we need this check? In order to protect GPU from a memory overload in the following line.
# If your GPU can handle batch size larger then default, you can specify it through --batch_size flag.
# If it doesn't, and you still want to sample more prompts, run this script with different seeds
# (specify through the --seed flag)
args.batch_size = args.num_samples # Sampling a single batch from the testset, with exactly args.num_samples
print('Loading dataset...')
data = load_dataset(args, max_frames, n_frames)
total_num_samples = args.num_samples * args.num_repetitions
print("Creating model and diffusion...")
model, diffusion = create_model_and_diffusion(args, data)
print(f"Loading checkpoints from [{args.model_path}]...")
state_dict = torch.load(args.model_path, map_location='cpu')
load_model_wo_clip(model, state_dict)
if args.guidance_param != 1:
model = ClassifierFreeSampleModel(model) # wrapping model with the classifier-free sampler
model.to(dist_util.dev())
model.eval() # disable random masking
if is_using_data:
iterator = iter(data)
_, model_kwargs = next(iterator)
else:
collate_args = [{'inp': torch.zeros(n_frames), 'tokens': None, 'lengths': n_frames}] * args.num_samples
is_t2m = any([args.input_text, args.text_prompt])
if is_t2m:
# t2m
collate_args = [dict(arg, text=txt) for arg, txt in zip(collate_args, texts)]
else:
# a2m
action = data.dataset.action_name_to_action(action_text)
collate_args = [dict(arg, action=one_action, action_text=one_action_text) for
arg, one_action, one_action_text in zip(collate_args, action, action_text)]
_, model_kwargs = collate(collate_args)
all_motions = []
all_lengths = []
all_text = []
for rep_i in range(args.num_repetitions):
print(f'### Sampling [repetitions #{rep_i}]')
# add CFG scale to batch
if args.guidance_param != 1:
model_kwargs['y']['scale'] = torch.ones(args.batch_size, device=dist_util.dev()) * args.guidance_param
sample_fn = diffusion.p_sample_loop
sample = sample_fn(
model,
(args.batch_size, model.njoints, model.nfeats, n_frames),
clip_denoised=False,
model_kwargs=model_kwargs,
skip_timesteps=0, # 0 is the default value - i.e. don't skip any step
init_image=None,
progress=True,
dump_steps=None,
noise=None,
const_noise=False,
)
# Recover XYZ *positions* from HumanML3D vector representation
if model.data_rep == 'hml_vec':
n_joints = 22 if sample.shape[1] == 263 else 21
sample = data.dataset.t2m_dataset.inv_transform(sample.cpu().permute(0, 2, 3, 1)).float()
sample = recover_from_ric(sample, n_joints)
sample = sample.view(-1, *sample.shape[2:]).permute(0, 2, 3, 1)
rot2xyz_pose_rep = 'xyz' if model.data_rep in ['xyz', 'hml_vec'] else model.data_rep
rot2xyz_mask = None if rot2xyz_pose_rep == 'xyz' else model_kwargs['y']['mask'].reshape(args.batch_size, n_frames).bool()
sample = model.rot2xyz(x=sample, mask=rot2xyz_mask, pose_rep=rot2xyz_pose_rep, glob=True, translation=True,
jointstype='smpl', vertstrans=True, betas=None, beta=0, glob_rot=None,
get_rotations_back=False)
if args.unconstrained:
all_text += ['unconstrained'] * args.num_samples
else:
text_key = 'text' if 'text' in model_kwargs['y'] else 'action_text'
all_text += model_kwargs['y'][text_key]
all_motions.append(sample.cpu().numpy())
all_lengths.append(model_kwargs['y']['lengths'].cpu().numpy())
print(f"created {len(all_motions) * args.batch_size} samples")
all_motions = np.concatenate(all_motions, axis=0)
all_motions = all_motions[:total_num_samples] # [bs, njoints, 6, seqlen]
all_text = all_text[:total_num_samples]
all_lengths = np.concatenate(all_lengths, axis=0)[:total_num_samples]
if os.path.exists(out_path):
shutil.rmtree(out_path)
os.makedirs(out_path)
npy_path = os.path.join(out_path, 'results.npy')
print(f"saving results file to [{npy_path}]")
np.save(npy_path,
{'motion': all_motions, 'text': all_text, 'lengths': all_lengths,
'num_samples': args.num_samples, 'num_repetitions': args.num_repetitions})
with open(npy_path.replace('.npy', '.txt'), 'w') as fw:
fw.write('\n'.join(all_text))
with open(npy_path.replace('.npy', '_len.txt'), 'w') as fw:
fw.write('\n'.join([str(l) for l in all_lengths]))
print(f"saving visualizations to [{out_path}]...")
skeleton = paramUtil.kit_kinematic_chain if args.dataset == 'kit' else paramUtil.t2m_kinematic_chain
sample_files = []
num_samples_in_out_file = 7
sample_print_template, row_print_template, all_print_template, \
sample_file_template, row_file_template, all_file_template = construct_template_variables(args.unconstrained)
for sample_i in range(args.num_samples):
rep_files = []
for rep_i in range(args.num_repetitions):
caption = all_text[rep_i*args.batch_size + sample_i]
length = all_lengths[rep_i*args.batch_size + sample_i]
motion = all_motions[rep_i*args.batch_size + sample_i].transpose(2, 0, 1)[:length]
save_file = sample_file_template.format(sample_i, rep_i)
print(sample_print_template.format(caption, sample_i, rep_i, save_file))
animation_save_path = os.path.join(out_path, save_file)
plot_3d_motion(animation_save_path, skeleton, motion, dataset=args.dataset, title=caption, fps=fps)
# Credit for visualization: https://github.com/EricGuo5513/text-to-motion
rep_files.append(animation_save_path)
sample_files = save_multiple_samples(args, out_path,
row_print_template, all_print_template, row_file_template, all_file_template,
caption, num_samples_in_out_file, rep_files, sample_files, sample_i)
abs_path = os.path.abspath(out_path)
print(f'[Done] Results are at [{abs_path}]')
def save_multiple_samples(args, out_path, row_print_template, all_print_template, row_file_template, all_file_template,
caption, num_samples_in_out_file, rep_files, sample_files, sample_i):
all_rep_save_file = row_file_template.format(sample_i)
all_rep_save_path = os.path.join(out_path, all_rep_save_file)
ffmpeg_rep_files = [f' -i {f} ' for f in rep_files]
hstack_args = f' -filter_complex hstack=inputs={args.num_repetitions}' if args.num_repetitions > 1 else ''
ffmpeg_rep_cmd = f'ffmpeg -y -loglevel warning ' + ''.join(ffmpeg_rep_files) + f'{hstack_args} {all_rep_save_path}'
os.system(ffmpeg_rep_cmd)
print(row_print_template.format(caption, sample_i, all_rep_save_file))
sample_files.append(all_rep_save_path)
if (sample_i + 1) % num_samples_in_out_file == 0 or sample_i + 1 == args.num_samples:
# all_sample_save_file = f'samples_{(sample_i - len(sample_files) + 1):02d}_to_{sample_i:02d}.mp4'
all_sample_save_file = all_file_template.format(sample_i - len(sample_files) + 1, sample_i)
all_sample_save_path = os.path.join(out_path, all_sample_save_file)
print(all_print_template.format(sample_i - len(sample_files) + 1, sample_i, all_sample_save_file))
ffmpeg_rep_files = [f' -i {f} ' for f in sample_files]
vstack_args = f' -filter_complex vstack=inputs={len(sample_files)}' if len(sample_files) > 1 else ''
ffmpeg_rep_cmd = f'ffmpeg -y -loglevel warning ' + ''.join(
ffmpeg_rep_files) + f'{vstack_args} {all_sample_save_path}'
os.system(ffmpeg_rep_cmd)
sample_files = []
return sample_files
def construct_template_variables(unconstrained):
row_file_template = 'sample{:02d}.mp4'
all_file_template = 'samples_{:02d}_to_{:02d}.mp4'
if unconstrained:
sample_file_template = 'row{:02d}_col{:02d}.mp4'
sample_print_template = '[{} row #{:02d} column #{:02d} | -> {}]'
row_file_template = row_file_template.replace('sample', 'row')
row_print_template = '[{} row #{:02d} | all columns | -> {}]'
all_file_template = all_file_template.replace('samples', 'rows')
all_print_template = '[rows {:02d} to {:02d} | -> {}]'
else:
sample_file_template = 'sample{:02d}_rep{:02d}.mp4'
sample_print_template = '["{}" ({:02d}) | Rep #{:02d} | -> {}]'
row_print_template = '[ "{}" ({:02d}) | all repetitions | -> {}]'
all_print_template = '[samples {:02d} to {:02d} | all repetitions | -> {}]'
return sample_print_template, row_print_template, all_print_template, \
sample_file_template, row_file_template, all_file_template
def load_dataset(args, max_frames, n_frames):
data = get_dataset_loader(args=args,
name=args.dataset,
batch_size=args.batch_size,
num_frames=max_frames,
split='test',
hml_mode='text_only')
data.fixed_length = n_frames
return data
if __name__ == "__main__":
main()