-
Notifications
You must be signed in to change notification settings - Fork 8
/
test.py
196 lines (162 loc) · 8.74 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import util.misc as utils
from util.misc import collate_fn_with_mask as collate_fn
from engine import train_one_epoch, train_one_epoch_w_accum, evaluate
from models import build_model
from datasets import build_dataset, train_transforms, test_transforms
from util.logger import get_logger
from util.config import Config
def get_args_parser():
parser = argparse.ArgumentParser('Transformer-based visual grounding', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--lr_vis_enc', default=1e-5, type=float)
parser.add_argument('--lr_bert', default=1e-5, type=float)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--lr_drop', default=60, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--checkpoint_step', default=1, type=int)
parser.add_argument('--checkpoint_latest', action='store_true')
parser.add_argument('--checkpoint_best', action='store_true')
# Model parameters
parser.add_argument('--load_weights_path', type=str, default=None,
help="Path to the pretrained model.")
parser.add_argument('--freeze_modules', type=list, default=[])
parser.add_argument('--freeze_param_names', type=list, default=[])
parser.add_argument('--freeze_epochs', type=int, default=1)
parser.add_argument('--freeze_losses', type=list, default=[])
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=1, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Bert
parser.add_argument('--bert_model', default='bert-base-uncased', type=str,
help='Bert model')
parser.add_argument('--bert_token_mode', default='bert-base-uncased', type=str, help='Bert tokenizer mode')
parser.add_argument('--bert_output_dim', default=768, type=int,
help='Size of the output of Bert')
parser.add_argument('--bert_output_layers', default=4, type=int,
help='the output layers of Bert')
parser.add_argument('--max_query_len', default=40, type=int,
help='The maximum total input sequence length after WordPiece tokenization.')
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
parser.add_argument('--loss_loc', default='loss_boxes', type=str,
help="The loss function for the predicted boxes")
parser.add_argument('--box_xyxy', action='store_true',
help='Use xyxy format to encode bounding boxes')
# * Loss coefficients
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--other_loss_coefs', default={}, type=float)
# dataset parameters
parser.add_argument('--data_root', default='./data/')
parser.add_argument('--split_root', default='./split/data/')
parser.add_argument('--dataset', default='gref')
parser.add_argument('--test_split', default='val')
parser.add_argument('--img_size', default=640)
parser.add_argument('--cache_images', action='store_true')
parser.add_argument('--output_dir', default='work_dirs/',
help='path where to save, empty for no saving')
parser.add_argument('--save_pred_path', default='')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--checkpoint', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--pin_memory', default=True, type=boolean_string)
parser.add_argument('--collate_fn', default='collate_fn')
parser.add_argument('--batch_size_val', default=16, type=int)
parser.add_argument('--batch_size_test', default=1, type=int)
parser.add_argument('--train_transforms', default=train_transforms)
parser.add_argument('--test_transforms', default=test_transforms)
parser.add_argument('--enable_batch_accum', action='store_true')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# configure file
parser.add_argument('--config', type=str, help='Path to the configure file.')
parser.add_argument('--model_config')
return parser
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def main(args):
utils.init_distributed_mode(args)
logger = get_logger("test", None, utils.get_rank())
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessor = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
dataset_test = build_dataset(test=True, args=args)
logger.info(f'The size of dataset: test({len(dataset_test)})')
if args.distributed:
sampler_test = DistributedSampler(dataset_test, shuffle=False)
else:
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
data_loader_test = DataLoader(dataset_test, args.batch_size_test, sampler=sampler_test,
pin_memory=args.pin_memory, drop_last=False,
collate_fn=collate_fn, num_workers=args.num_workers)
output_dir = Path(args.output_dir)
assert args.checkpoint
checkpoint = torch.load(args.checkpoint, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
test_stats, test_acc, test_time = evaluate(
model, criterion, postprocessor, data_loader_test, device, args.save_pred_path
)
logger.info(' '.join(['[Test accuracy]', *[f'{k}: {v:.4f}' for k, v in test_acc.items()]]))
logger.info(' '.join(['[Test time]', *[f'{k}: {v:.6f}' for k, v in test_time.items()]]))
return
if __name__ == '__main__':
parser = argparse.ArgumentParser('VLTVG test script', parents=[get_args_parser()])
args = parser.parse_args()
if args.config:
cfg = Config(args.config)
cfg.merge_to_args(args)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)