Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can't get the generated categorical values according to the README. #18

Open
koseoyoung opened this issue Jun 4, 2023 · 3 comments
Open

Comments

@koseoyoung
Copy link

Hi, I'm trying to generate the synthetic data by following the README.
The training works well, and I'm able to find the numerical generated values, but I can't get the categorical generated values.
In detail,exp/churn2/ddpm_mlp_best/X_cat_train.npy is empty.
On the other hand, I can see the values in exp/churn2/ddpm_mlp_best/X_num_train.npy.
Is this a bug, or am I missing anything? Thanks!

python scripts/pipeline.py --config exp/churn2/ddpm_mlp_best/config.toml --train --sample 

[3 2 2 2]
16
{'num_classes': 2, 'is_y_cond': True, 'rtdl_params': {'d_layers': [512, 1024, 1024, 1024, 1024, 256], 'dropout': 0.0}, 'd_in': 16}
mlp
Step 500/30000 MLoss: 0.713 GLoss: 0.9151 Sum: 1.6280999999999999
Step 1000/30000 MLoss: 0.7205 GLoss: 0.6157 Sum: 1.3362
Step 1500/30000 MLoss: 0.7073 GLoss: 0.5363 Sum: 1.2436
Step 2000/30000 MLoss: 0.718 GLoss: 0.506 Sum: 1.224
Step 2500/30000 MLoss: 0.7069 GLoss: 0.484 Sum: 1.1909
Step 3000/30000 MLoss: 0.7195 GLoss: 0.4682 Sum: 1.1877
Step 3500/30000 MLoss: 0.721 GLoss: 0.4381 Sum: 1.1591
Step 4000/30000 MLoss: 0.7193 GLoss: 0.4203 Sum: 1.1396000000000002
Step 4500/30000 MLoss: 0.7173 GLoss: 0.412 Sum: 1.1293
Step 5000/30000 MLoss: 0.7159 GLoss: 0.4084 Sum: 1.1242999999999999
Step 5500/30000 MLoss: 0.7206 GLoss: 0.4068 Sum: 1.1274
Step 6000/30000 MLoss: 0.7188 GLoss: 0.4046 Sum: 1.1234
Step 6500/30000 MLoss: 0.7161 GLoss: 0.3968 Sum: 1.1129
Step 7000/30000 MLoss: 0.7148 GLoss: 0.3964 Sum: 1.1112
Step 7500/30000 MLoss: 0.7152 GLoss: 0.3985 Sum: 1.1137
Step 8000/30000 MLoss: 0.7154 GLoss: 0.3928 Sum: 1.1082
Step 8500/30000 MLoss: 0.6898 GLoss: 0.3933 Sum: 1.0831
Step 9000/30000 MLoss: 0.7257 GLoss: 0.3968 Sum: 1.1225
Step 9500/30000 MLoss: 0.7103 GLoss: 0.3969 Sum: 1.1072
Step 10000/30000 MLoss: 0.7095 GLoss: 0.3844 Sum: 1.0939
Step 10500/30000 MLoss: 0.7171 GLoss: 0.3905 Sum: 1.1076
Step 11000/30000 MLoss: 0.7225 GLoss: 0.3903 Sum: 1.1128
Step 11500/30000 MLoss: 0.6993 GLoss: 0.3919 Sum: 1.0912000000000002
Step 12000/30000 MLoss: 0.7088 GLoss: 0.3844 Sum: 1.0932
Step 12500/30000 MLoss: 0.726 GLoss: 0.385 Sum: 1.111
Step 13000/30000 MLoss: 0.7013 GLoss: 0.3832 Sum: 1.0845
Step 13500/30000 MLoss: 0.7045 GLoss: 0.382 Sum: 1.0865
Step 14000/30000 MLoss: 0.6991 GLoss: 0.3807 Sum: 1.0798
Step 14500/30000 MLoss: 0.7229 GLoss: 0.3812 Sum: 1.1040999999999999
Step 15000/30000 MLoss: 0.7096 GLoss: 0.3825 Sum: 1.0921
Step 15500/30000 MLoss: 0.7081 GLoss: 0.3788 Sum: 1.0869
Step 16000/30000 MLoss: 0.7158 GLoss: 0.3816 Sum: 1.0974
Step 16500/30000 MLoss: 0.7067 GLoss: 0.377 Sum: 1.0836999999999999
Step 17000/30000 MLoss: 0.6844 GLoss: 0.3759 Sum: 1.0603
Step 17500/30000 MLoss: 0.699 GLoss: 0.373 Sum: 1.072
Step 18000/30000 MLoss: 0.692 GLoss: 0.3802 Sum: 1.0722
Step 18500/30000 MLoss: 0.6822 GLoss: 0.3725 Sum: 1.0547
Step 19000/30000 MLoss: 0.7103 GLoss: 0.3775 Sum: 1.0878
Step 19500/30000 MLoss: 0.7161 GLoss: 0.373 Sum: 1.0891
Step 20000/30000 MLoss: 0.6964 GLoss: 0.3737 Sum: 1.0701
Step 20500/30000 MLoss: 0.6908 GLoss: 0.3772 Sum: 1.068
Step 21000/30000 MLoss: 0.687 GLoss: 0.3743 Sum: 1.0613000000000001
Step 21500/30000 MLoss: 0.6917 GLoss: 0.3731 Sum: 1.0648
Step 22000/30000 MLoss: 0.6878 GLoss: 0.3727 Sum: 1.0605
Step 22500/30000 MLoss: 0.7067 GLoss: 0.3743 Sum: 1.081
Step 23000/30000 MLoss: 0.6958 GLoss: 0.3685 Sum: 1.0643
Step 23500/30000 MLoss: 0.7281 GLoss: 0.3687 Sum: 1.0968
Step 24000/30000 MLoss: 0.7148 GLoss: 0.3705 Sum: 1.0853
Step 24500/30000 MLoss: 0.7021 GLoss: 0.3696 Sum: 1.0716999999999999
Step 25000/30000 MLoss: 0.6956 GLoss: 0.3667 Sum: 1.0623
Step 25500/30000 MLoss: 0.6925 GLoss: 0.3654 Sum: 1.0579
Step 26000/30000 MLoss: 0.6943 GLoss: 0.3682 Sum: 1.0625
Step 26500/30000 MLoss: 0.6899 GLoss: 0.3646 Sum: 1.0545
Step 27000/30000 MLoss: 0.6971 GLoss: 0.36 Sum: 1.0571000000000002
Step 27500/30000 MLoss: 0.7294 GLoss: 0.3662 Sum: 1.0956000000000001
Step 28000/30000 MLoss: 0.7321 GLoss: 0.3631 Sum: 1.0952
Step 28500/30000 MLoss: 0.6992 GLoss: 0.3626 Sum: 1.0618
Step 29000/30000 MLoss: 0.7026 GLoss: 0.3621 Sum: 1.0647
Step 29500/30000 MLoss: 0.711 GLoss: 0.3618 Sum: 1.0728
Step 30000/30000 MLoss: 0.6822 GLoss: 0.3598 Sum: 1.042
mlp
Sample timestep    0
Sample timestep    0
Sample timestep    0
Sample timestep    0
Sample timestep    0
Sample timestep    0
Discrete cols: [2, 4]
Num shape:  (52000, 7)
Elapsed time: 0:13:52
@koseoyoung
Copy link
Author

Previously it has such error:

 [],
 [],
 [],
 [],
 [],
 [],
 [],
 [],
 [],
 [],
 [],
 [],
 [Unable to show a serialized python object.]]

The root cause of this issue is that np.save requires np data type, which is str when we save the generated cat file into the disk. I fixed it through this PR. #19

After this fix:

[['Spain', '1', '1', '0'],
 ['Germany', '0', '1', '0'],
 ['Germany', '0', '1', '0'],
 ['Germany', '1', '1', '0'],
 ['Germany', '1', '0', '0'],
 ['Spain', '0', '1', '1'],
 ['Spain', '1', '0', '0'],
 ['Germany', '0', '1', '1'],
 ['Spain', '0', '1', '0'],
 ['Spain', '1', '1', '0'],
 ['Spain', '1', '1', '0'],
 ['France', '1', '0', '0'],
 ['Germany', '1', '1', '0'],
 ['Germany', '0', '1', '0'],
 ['Spain', '0', '0', '1'],
 ['France', '1', '0', '0'],
 ['France', '0', '1', '1'],
 ['Spain', '1', '1', '0'],
 ['Spain', '1', '1', '0'],
 ['France', '0', '0', '1'],
 ['France', '0', '1', '0'],
 ['Spain', '0', '1', '0'],
 ['Germany', '0', '1', '0'],

@JiangLei1012
Copy link

Hello, could you tell me the detiles of your solution? Thank you so much!

@happyxin5
Copy link

(tddpm) D:\Study\code\tab-ddpm-main>wget "https://www.dropbox.com/s/rpckvcs3vx7j605/data.tar?dl=0" -O data.tar
--2024-09-25 21:30:54-- https://www.dropbox.com/s/rpckvcs3vx7j605/data.tar?dl=0
Resolving www.dropbox.com (www.dropbox.com)... 103.228.130.61, 2a03:2880:f10d:83:face:b00c:0:25de
Connecting to www.dropbox.com (www.dropbox.com)|103.228.130.61|:443%7C103.228.130.61%7C:443/)... failed: Unknown error.
Connecting to www.dropbox.com (www.dropbox.com)|2a03:2880:f10d:83:face:b00c:0:25de|:443%7C2a03:2880:f10d:83:face:b00c:0:25de%7C:443/)... failed: Bad file descriptor.
Have you ever encountered this problem?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants